Reputation: 234
I am a newbie in Apache-spark and recently started coding in Scala.
I have a RDD with 4 columns that looks like this: (Columns 1 - name, 2- title, 3- views, 4 - size)
aa File:Sleeping_lion.jpg 1 8030
aa Main_Page 1 78261
aa Special:Statistics 1 20493
aa.b User:5.34.97.97 1 4749
aa.b User:80.63.79.2 1 4751
af Blowback 2 16896
af Bluff 2 21442
en Huntingtown,_Maryland 1 0
I want to group based on Column Name and get the sum of Column views.
It should be like this:
aa 3
aa.b 2
af 2
en 1
I have tried to use groupByKey
and reduceByKey
but I am stuck and unable to proceed further.
Upvotes: 2
Views: 21504
Reputation: 5700
I assume that you have already have your RDD populated.
//For simplicity, I build RDD this way
val data = Seq(("aa", "File:Sleeping_lion.jpg", 1, 8030),
("aa", "Main_Page", 1, 78261),
("aa", "Special:Statistics", 1, 20493),
("aa.b", "User:5.34.97.97", 1, 4749),
("aa.b", "User:80.63.79.2", 1, 4751),
("af", "Blowback", 2, 16896),
("af", "Bluff", 2, 21442),
("en", "Huntingtown,_Maryland", 1, 0))
Dataframe approach
val sql = new SQLContext(sc)
import sql.implicits._
import org.apache.spark.sql.functions._
val df = data.toDF("name", "title", "views", "size")
df.groupBy($"name").agg(count($"name") as "") show
**Result**
+----+-----+
|name|count|
+----+-----+
| aa| 3|
| af| 2|
|aa.b| 2|
| en| 1|
+----+-----+
RDD Approach (CountByKey(...))
rdd.keyBy(f => f._1).countByKey().foreach(println(_))
RDD Approach (reduceByKey(...))
rdd.map(f => (f._1, 1)).reduceByKey((accum, curr) => accum + curr).foreach(println(_))
If any of this does not solve your problem, pls share where exactely you have strucked.
Upvotes: 2
Reputation: 609
This should work, you read the text file, split each line by the separator, map to key value with the appropiate fileds and use countByKey:
sc.textFile("path to the text file")
.map(x => x.split(" ",-1))
.map(x => (x(0),x(3)))
.countByKey
To complete my answer you can approach the problem using dataframe api ( if this is possible for you depending on spark version), example:
val result = df.groupBy("column to Group on").agg(count("column to count on"))
another possibility is to use the sql approach:
val df = spark.read.csv("csv path")
df.createOrReplaceTempView("temp_table")
val result = sqlContext.sql("select <col to Group on> , count(col to count on) from temp_table Group by <col to Group on>")
Upvotes: 3