Shankari
Shankari

Reputation: 399

How to interpret the output of scipy.stats.ttest_ind?

I have two sets of noisy samples - I want to determine whether they are substantively different or not. I plan to do this using a 2 sided t-test for their means and looking at the p-value.

Previous answers (e.g. How to calculate the statistics "t-test" with numpy) have recommended using ttest_ind from scipy - i.e. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

But I don't understand how to interpret those results.

If you see the examples, the p-value for the case in which the random values have the same mean is 0.78849443369564776

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564776)

and the p-value for the case in which the random values have different means and standard deviations is 0.34744170334794122.

>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs5)
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
(-0.94365973617132992, 0.34744170334794122)

It seems like we never get a p-value below 0.1 and reject the hypothesis, even in the case where the rv is clearly drawn from a distribution with a different mean.

There must be something obvious that I am missing here but after much RTFMing, I can't figure out what it is...

Upvotes: 6

Views: 15276

Answers (1)

Warren Weckesser
Warren Weckesser

Reputation: 114781

Your samples rvs1 and rvs5 overlap a lot. Take a look at their histograms:

In [83]: import numpy as np

In [84]: import matplotlib.pyplot as plt

In [85]: from scipy import stats

In [86]: np.random.seed(12345)

In [87]: rvs1 = stats.norm.rvs(loc=5, scale=10, size=500)

In [88]: rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)

Histograms:

In [91]: plt.hist(rvs1, bins=15, color='c', edgecolor='k', alpha=0.5)
Out[91]: 
(array([ 11.,   8.,  23.,  59.,  70.,  80.,  76.,  75.,  47.,  29.,  15.,
          3.,   1.,   2.,   1.]),
 array([-21.4440949 , -17.06280322, -12.68151153,  -8.30021984,
         -3.91892815,   0.46236353,   4.84365522,   9.22494691,
         13.6062386 ,  17.98753028,  22.36882197,  26.75011366,
         31.13140535,  35.51269703,  39.89398872,  44.27528041]),
 <a list of 15 Patch objects>)

In [92]: plt.hist(rvs5, bins=15, color='g', edgecolor='k', alpha=0.5)
Out[92]: 
(array([  1.,   0.,   0.,   2.,   5.,  10.,  15.,  11.,  16.,  18.,   9.,
          4.,   3.,   4.,   2.]),
 array([-50.98686996, -43.98675863, -36.98664729, -29.98653596,
        -22.98642462, -15.98631329,  -8.98620195,  -1.98609062,
          5.01402071,  12.01413205,  19.01424338,  26.01435472,
         33.01446605,  40.01457739,  47.01468872,  54.01480006]),
 <a list of 15 Patch objects>)

histograms

In this case, the p-value is about 0.16:

In [93]: stats.ttest_ind(rvs1, rvs5, equal_var=False)
Out[93]: Ttest_indResult(statistic=-1.4255662967967209, pvalue=0.15678343609588596)

If you make the scales smaller, or increase difference of the mean values of the distributions from which you draw the samples, you'll see that the p-value gets small pretty quick. For example,

In [110]: np.random.seed(12345)

In [111]: rvsa = stats.norm.rvs(loc=5, scale=4, size=500)

In [112]: rvsb = stats.norm.rvs(loc=8, scale=6.5, size=100)

In [113]: stats.ttest_ind(rvsa, rvsb, equal_var=False)
Out[113]: Ttest_indResult(statistic=-4.6900889904607572, pvalue=7.3811906412170361e-06)

You'll also see lower p-values if you increase the sizes of the samples. For example, here I increased the sizes of rvs1 and rvs5 to 2000 and 1000, respectively, and the p-value is about 4e-6:

In [120]: np.random.seed(12345)

In [121]: rvs1 = stats.norm.rvs(loc=5, scale=10, size=2000)

In [122]: rvs5 = stats.norm.rvs(loc=8, scale=20, size=1000)

In [123]: stats.ttest_ind(rvs1, rvs5, equal_var=False)
Out[123]: Ttest_indResult(statistic=-4.6093457457907219, pvalue=4.4518966751259737e-06)

Upvotes: 1

Related Questions