Reputation: 399
I have two sets of noisy samples - I want to determine whether they are substantively different or not. I plan to do this using a 2 sided t-test for their means and looking at the p-value.
Previous answers (e.g. How to calculate the statistics "t-test" with numpy) have recommended using ttest_ind
from scipy
- i.e.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
But I don't understand how to interpret those results.
If you see the examples, the p-value for the case in which the random values have the same mean is 0.78849443369564776
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564776)
and the p-value for the case in which the random values have different means and standard deviations is 0.34744170334794122
.
>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs5)
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
(-0.94365973617132992, 0.34744170334794122)
It seems like we never get a p-value below 0.1
and reject the hypothesis, even in the case where the rv is clearly drawn from a distribution with a different mean.
There must be something obvious that I am missing here but after much RTFMing, I can't figure out what it is...
Upvotes: 6
Views: 15276
Reputation: 114781
Your samples rvs1
and rvs5
overlap a lot. Take a look at their histograms:
In [83]: import numpy as np
In [84]: import matplotlib.pyplot as plt
In [85]: from scipy import stats
In [86]: np.random.seed(12345)
In [87]: rvs1 = stats.norm.rvs(loc=5, scale=10, size=500)
In [88]: rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
Histograms:
In [91]: plt.hist(rvs1, bins=15, color='c', edgecolor='k', alpha=0.5)
Out[91]:
(array([ 11., 8., 23., 59., 70., 80., 76., 75., 47., 29., 15.,
3., 1., 2., 1.]),
array([-21.4440949 , -17.06280322, -12.68151153, -8.30021984,
-3.91892815, 0.46236353, 4.84365522, 9.22494691,
13.6062386 , 17.98753028, 22.36882197, 26.75011366,
31.13140535, 35.51269703, 39.89398872, 44.27528041]),
<a list of 15 Patch objects>)
In [92]: plt.hist(rvs5, bins=15, color='g', edgecolor='k', alpha=0.5)
Out[92]:
(array([ 1., 0., 0., 2., 5., 10., 15., 11., 16., 18., 9.,
4., 3., 4., 2.]),
array([-50.98686996, -43.98675863, -36.98664729, -29.98653596,
-22.98642462, -15.98631329, -8.98620195, -1.98609062,
5.01402071, 12.01413205, 19.01424338, 26.01435472,
33.01446605, 40.01457739, 47.01468872, 54.01480006]),
<a list of 15 Patch objects>)
In this case, the p-value is about 0.16:
In [93]: stats.ttest_ind(rvs1, rvs5, equal_var=False)
Out[93]: Ttest_indResult(statistic=-1.4255662967967209, pvalue=0.15678343609588596)
If you make the scales smaller, or increase difference of the mean values of the distributions from which you draw the samples, you'll see that the p-value gets small pretty quick. For example,
In [110]: np.random.seed(12345)
In [111]: rvsa = stats.norm.rvs(loc=5, scale=4, size=500)
In [112]: rvsb = stats.norm.rvs(loc=8, scale=6.5, size=100)
In [113]: stats.ttest_ind(rvsa, rvsb, equal_var=False)
Out[113]: Ttest_indResult(statistic=-4.6900889904607572, pvalue=7.3811906412170361e-06)
You'll also see lower p-values if you increase the sizes of the samples. For example, here I increased the sizes of rvs1
and rvs5
to 2000 and 1000, respectively, and the p-value is about 4e-6:
In [120]: np.random.seed(12345)
In [121]: rvs1 = stats.norm.rvs(loc=5, scale=10, size=2000)
In [122]: rvs5 = stats.norm.rvs(loc=8, scale=20, size=1000)
In [123]: stats.ttest_ind(rvs1, rvs5, equal_var=False)
Out[123]: Ttest_indResult(statistic=-4.6093457457907219, pvalue=4.4518966751259737e-06)
Upvotes: 1