Reputation: 73
I'd like to use mutate function from the tidyverse to create a new column based on the old column using only a data frame and strings, which represent column headers, as inputs.
I can get this to work without using the tidyverse (see function f below), but I'd like to get it to work using the tidyverse (see function f.tidy below)
Can someone please post a solution for adding this column using mutate called from a inside function?
df <- data.frame('test' = 1:3, 'tcy' = 4:6)
# test tcy
# 1 4
# 2 5
# 3 6
f.tidy <- function(df, old.col, new.col) {
df.rv <- df %>%
mutate(new.col = .data$old.col + 1)
return(df.rv)
}
f <- function(df, old.col, new.col) {
df.rv <- df
df.rv[, new.col] <- df.rv[, old.col] + 1
return(df.rv)
}
old.col <- 'tcy'
new.col <- 'dan'
f.tidy(df = df, old.col = old.col, new.col = new.col)
# Evaluation error: Column 'old.col': not found in data
f(df = df, old.col = old.col, new.col = new.col)
# Produces Desired Output:
# test tcy dan
# 1 4 5
# 2 5 6
# 3 6 7
Upvotes: 6
Views: 2876
Reputation: 23
I know this has been answered but I had a problem understanding the solution myself so after experimenting and watching https://www.youtube.com/watch?v=YlZuT6PWOEY&ab_channel=IDGTECHtalk I hope this can help somebody else.
This is my solution using {{}} and enquo() from package rlang:
library(rlang)
library(dplyr)
df <- data.frame('test' = 1:3, 'tcy' = 4:6)
f_tidy <- function(df, old_col, new_col_str){
old_col_quo <- enquo(old_col) # Store as "meta" variable to evaluate when needed using "!!".
df <- df %>%
mutate({{new_col_str}} := !!old_col_quo + 1)
return(df)
}
df %>% f_tidy(old_col = tcy, new_col_str = "mutated_col")
Output:
test tcy mutated_col
1 1 4 5
2 2 5 6
3 3 6 7
Upvotes: 1
Reputation: 887951
We could use rlang
to convert it to symbol and then evaluate with !!
f.tidy <- function(df, old.col, new.col) {
df %>%
mutate(!! (new.col) := !!rlang::sym(old.col) + 1)
}
f.tidy(df = df, old.col = old.col, new.col = new.col)
# test tcy dan
#1 1 4 5
#2 2 5 6
#3 3 6 7
Or another option is mutate_at
with rename_at
f.tidy <- function(df, old.col, new.col) {
df %>%
mutate_at(vars(old.col), funs(new = .+ 1)) %>%
rename_at(vars(matches("new")), ~ new.col)
}
f.tidy(df = df, old.col = old.col, new.col = new.col)
# test tcy dan
#1 1 4 5
#2 2 5 6
#3 3 6 7
Upvotes: 8