Reputation: 833
How can I display values for my stacked barh chart that come from a dataframe? How can I place the labels above their respective sections on each bar and modify the font so that it shows up well as a gray scale graphic?
It is related to this question but it has a list of values rather than two lists pulled from a pandas dataframe. If it were a singe list, I think I could pull values from a single record in the dataframe but with two lists, I'm not sure how to apply that to each bar in the bar graph.
My dataframe:
Delin. Group1 Group2 Group3 Group4 Group5
Census 0.2829 0.3387 0.2636 0.0795 0.0353
USPS 0.2538 0.3143 0.2901 0.1052 0.0366
My code:
import os
import pandas as pd
import time
#
start_time = time.time()
#
output_dir = r"C:\Some\Directory\For\Ouputs"
#
output_fig = "race_barh2.png"
#
fig_path = os.path.join(output_dir, output_fig)
#
os.chdir(output_dir)
#
input_csv = r"C:\Some\Directory\To\My.csv"
#
df = pd.read_csv(input_csv, delimiter = ",")
#
ax = df.plot.barh( stacked = True, color = ("#252525", "#636363", "#969696", "#cccccc", "#f7f7f7"), edgecolor = "black", linewidth = 1)
#
ax.set_xlabel("Percentage of Total", fontsize = 18)
#
ax.set_ylabel("Boundary Delineation", fontsize = 18)
#
ax.set_yticklabels(["Census", "USPS"])
#
ax.set_xticklabels(["0%", "20%", "40%", "60%", "80%", "100%"])
#
horiz_offset = 1.03
#
vert_offset = 1
#
ax.legend(bbox_to_anchor=(horiz_offset, vert_offset))
#
fig = ax.get_figure()
#
fig.savefig(fig_path, bbox_inches = "tight", dpi = 600)
#
#
#
end_time = round( time.time() - start_time, 5 )
#
print "Seconds elapsed: {0}".format(end_time)
Upvotes: 2
Views: 2231
Reputation: 1357
You can do this similarly as in the referenced question, by annotating the bars. For a stacked bar chart you'll have to tweak the position of the labels a little to get them where you want. You can play around with the horizontalalignment
, verticalalignment
and adding a bit of a margin as I did (+.5).
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from cycler import cycler
#used gray colormap, you can use your own colors by replacing colormap='gray' with color=colors
colors = ["#252525", "#636363", "#969696", "#cccccc", "#f7f7f7"]
plt.rcParams['axes.prop_cycle'] = cycler(color=colors)
#dummy data
df = pd.DataFrame(np.random.randint(5, 8, (10, 3)), columns=['Group1', 'Group2', 'Group3'])
for col in df.columns.tolist():
df[col] = df[col].apply(lambda x:x*100 / df[col].sum())
ax = df.T.plot.barh(stacked=True, colormap='gray', edgecolor='black', linewidth=1)
for lbl in ax.patches:
ax.annotate("{:.0f}%".format(int(lbl.get_width())), (lbl.get_x(), lbl.get_y()+.5), verticalalignment='bottom', horizontalalignment='top', fontsize=8, color='black')
ax.legend(loc='center left', bbox_to_anchor=(1.0, .5))
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.show()
Upvotes: 3