Reputation: 2382
I've been recently trying to implement a model, which can be described as following: Given an input matrix and a set of targets, let the model learn, simultaneously, the matrix representation, as well as the targets via a custom loss function.
The architecture (simplified):
input_matrix = Input(shape=(i_shape,))
layer1 = Dense(100)(input_matrix)
output = Dense(3)(layer1)
autoencoder_mid = Dense(100)(input_matrix)
autoencoder_output = Dense(i_shape)(autoencoder_mid)
My idea of a loss function:
def customLoss(true_matrix,pred_matrix):
def combined_loss(y_true,y_pred):
return K.abs(y_true-y_pred)
a = K.mean( K.square(y_pred - y_true) * K.exp(-K.log(1.7) * (K.log(1. + K.exp((y_true - 3)/5 )))),axis=-1 )
b = K.mean( K.square(pred_matrix - true_matrix) * K.exp(-K.log(1.7) * (K.log(1. + K.exp((true_matrix - 3)/5 )))),axis=-1)
return a+b
return combined_loss
I compile the model as:
net = Model(input_matrix, [output,autoencoder_output])
net = net.compile(optimizer='adam', loss=customLoss(true_matrix=X,pred_matrix=autoencoder_output))
Where I try to fit the network with a standard:
net.fit(X,
target,
epochs=10,
batch_size=10)
The error I get is:
ValueError: Tensor conversion requested dtype float32 for Tensor with dtype float64: 'Tensor("loss/dense_4_loss/Log_3:0", shape=(389, 3890), dtype=float64, device=/device:GPU:0)'
My question is, is there any other way of doing this? If so, could you please point me towards a possible solution. Thank you very much.
Upvotes: 4
Views: 5318
Reputation: 2612
You can try this:
def customLoss(true_matrix):
def combined_loss(y_true,y_pred):
y_pred, pred_matrix = y_pred
...
return combined_loss
net = Model(input_matrix, [output,autoencoder_output])
net.compile(optimizer='adam', loss=customLoss(X))
As the original y_pred will be a touple with (output,autoencoder_output)
.
Concerning the double return
, the function will only return the first one, so I'd remove one of the two return lines or combine the two outputs such as:
alpha = 0.5
beta = 0.5
...
loss1, loss2 = K.abs(y_true-y_pred), a+b
return alpha*loss1 + beta*loss2
Changing alpha
and beta
upon convenience.
Thus, the whole thing could be:
def customLoss(true_matrix, alpha = 0.5, beta = 0.5):
def combined_loss(y_true,y_pred):
y_pred, pred_matrix = y_pred
a = K.mean( K.square(y_pred - y_true) * K.exp(-K.log(1.7) * (K.log(1. + K.exp((y_true - 3)/5 )))),axis=-1 )
b = K.mean( K.square(pred_matrix - true_matrix) * K.exp(-K.log(1.7) * (K.log(1. + K.exp((true_matrix - 3)/5 )))),axis=-1)
loss1, loss2 = K.abs(y_true-y_pred), a+b
return alpha*loss1 + beta*loss2
return combined_loss
net = Model(input_matrix, [output,autoencoder_output])
net.compile(optimizer='adam', loss=customLoss(X))
Upvotes: 4