Reputation: 343
lets say I create structured array in numpy:
name = ['Tom' , 'Jim', 'Alice', 'Alice', 'Greg']
height = [188, 160, 160, 157, 180]
pet = ['dog', 'cat', 'fish', 'dog', 'cat']
a = np.zeros(len(name), dtype=[('name', 'U30'), ('height', 'i'), ('pet', 'U30')])
a['name'] = name
a['height'] = height
a['pet'] = pet
Is there a way in numpy to extract those rows which satisfy some condition. For example:
'height' == 160 and 'pet' == 'cat'
Upvotes: 2
Views: 659
Reputation: 51335
IIUC, Here is a way to do it with numpy
a[(a['height'] == 160) & (a['pet'] == 'cat')]
Which returns:
array([('Jim', 160, 'cat')],
dtype=[('name', '<U30'), ('height', '<i4'), ('pet', '<U30')])
If you want to get just the index at which the conditions are satisfied, use numpy.where
:
np.where((a['height'] == 160) & (a['pet'] == 'cat'))
# (array([1]),)
Caveat:
That being said, numpy
might not be the best tool for your purposes. To see why, consider what your array a
looks like:
>>> a
array([('Tom', 188, 'dog'), ('Jim', 160, 'cat'), ('Alice', 160, 'fish'),
('Alice', 157, 'dog'), ('Greg', 180, 'cat')],
dtype=[('name', '<U30'), ('height', '<i4'), ('pet', '<U30')])
It's kind of hard to read...
Think about using pandas
for organizing tabular data:
import pandas as pd
df = pd.DataFrame({'name':name, 'height':height, 'pet':pet})
>>> df
height name pet
0 188 Tom dog
1 160 Jim cat
2 160 Alice fish
3 157 Alice dog
4 180 Greg cat
>>> df.loc[(df.height==160) & (df['pet'] == 'cat')]
height name pet
1 160 Jim cat
Upvotes: 5