Reputation: 79
Struggling newbie. If I have two pandas dataframes something like :
import pandas as pd
data = {'col1': ['black sphynx bob','brown labrador','grey labrador mervin',
'brown siamese cat','white siamese']}
desc_df = pd.DataFrame(data=data)
catg = {'dog': ['labrador','rottweiler',
'beagle'],'cat':['siamese','sphynx','ragdoll']}
catg_df = pd.DataFrame(data=catg)
desc_df
col1
0 black spyhnx bob
1 brown labrador
2 grey labrador mervin
3 brown siamese cat
4 white Siamese
catg_df
cat dog
0 siamese labrador
1 sphynx rottweiler
2 ragdoll beagle
I'd like to end up with desc_df dataframe:
col1 col2
0 black spyhnx bob cat
1 brown Labrador dog
2 grey labrador Mervin dog
3 brown siamese cat cat
4 white Siamese cat
I thought I maybe could use the apply method with a function. I'm just not 100% confident if that is the best way to approach this and how exactly it could be done. Many thanks
Upvotes: 1
Views: 48
Reputation: 323226
You can using str.contains
+ np.where
desc_df['col2']=np.where(desc_df.col1.str.contains(catg_df.cat.str.cat(sep='|')),'cat','dog')
desc_df
Out[1538]:
col1 col2
0 black spyhnx bob dog
1 brown labrador dog
2 grey labrador mervin dog
3 brown siamese cat cat
4 white siamese cat
OK update for multiple condition
d=catg_df.apply('|'.join).to_dict()
desc_df.col1.apply(lambda x : ''.join([z if pd.Series(x).str.contains(y).values else '' for z,y in d.items()]))
Out[1568]:
0
1 dog
2 dog
3 cat
4 cat
Name: col1, dtype: object
Upvotes: 1
Reputation: 164673
One way is to create a dictionary mapping animals to type.
Then use pd.Series.apply
with next
and a generator expression:
d = {i: k for k in catg_df for i in catg_df[k].unique()}
desc_df['col2'] = desc_df['col1'].apply(lambda x: next((d.get(i) for i in x.split() \
if i in d), None))
print(desc_df)
# col1 col2
# 0 black sphynx bob cat
# 1 brown labrador dog
# 2 grey labrador mervin dog
# 3 brown siamese cat cat
# 4 white siamese cat
Upvotes: 1