Reputation: 728
I have a list of columns within a dataframe which where i want to check if all those columns are NA
and create a new column which tells me if they are NA
or not.
Here is an example of it working with one column, where Any_Flag
is my new column:
ItemStats_2014$Any_Flag <- ifelse(is.na(ItemStats_2014$Item_Flag_A), "Y", "N")
When i try to run the check over multiple columns, I am getting what i expect:
ItemStats_2014$Any_Flag <- ifelse(all(is.na(ItemStats_2014[ ,grep("Flag", names(ItemStats_2014), value = T)])), "Y", "N")
It returns everything to be false or "N".
Upvotes: 6
Views: 14897
Reputation: 3305
And a data.table
way without any apply
is:
library(arsenal)
library(data.table)
# dummy data
set.seed(1)
data = c(LETTERS, NA)
dt = data.table(Flag_A=sample(data), Flag_B = sample(data), C=sample(data), D=sample(data), Flag_E=sample(data))
dt = rbind(NA, dt)
# All-NA/Any-NA check
columns_to_check = names(dt)[grep('Flag', names(dt))]
dt[, AllNA:=allNA(.SD), by=1:nrow(dt), .SDcols = columns_to_check]
dt[, AnyNA:=anyNA(.SD), by=1:nrow(dt), .SDcols = columns_to_check]
Upvotes: 3
Reputation: 4929
Data
set.seed(1)
data <- c(LETTERS, NA)
df <- data.frame(Flag_A = sample(data), Flag_B = sample(data),
C = sample(data), D = sample(data), Flag_E = sample(data))
df <- rbind(NA, df)
Code
Identifying all NAs per row:
> df$All_NA <- apply(df[, grep("Flag", names(df))], 1, function(x) all(is.na(x)))
> head(df)
Flag_A Flag_B C D Flag_E All_NA
1 <NA> <NA> <NA> <NA> <NA> TRUE
2 H K B T Y FALSE
3 J W C K P FALSE
4 O I H I <NA> FALSE
5 V L M S R FALSE
6 E N P E I FALSE
Identifying at least one NA per row:
> df$Any_NA <- apply(df[, grep("Flag", names(df))], 1, function(x) anyNA(x))
> head(df)
Flag_A Flag_B C D Flag_E Any_NA
1 <NA> <NA> <NA> <NA> <NA> TRUE
2 H K B T Y FALSE
3 J W C K P FALSE
4 O I H I <NA> TRUE
5 V L M S R FALSE
6 E N P E I FALSE
Upvotes: 9
Reputation: 1928
I'm not sure what the grep
part is supposed to do, but here's a simpler way to accomplish what you want:
apply(ItemStats_2014[, 2:10], MARGIN = 1, FUN = function(x) all(is.na(x)))
Replace 2:10
with whatever columns you want to check.
Amendment: If you want to detect which columns contain the word "Flag" rather than hard coding their indices -- which would be better anyway! -- I like the package stringr
for working with text. You could do this to select your columns:
library(stringr)
MyCols <- which(str_detect(names(ItemStats_2014), "Flag"))
Now, replace 2:10
with MyCols
in the apply(...
code above.
Upvotes: 3
Reputation: 3233
I think that you are trying to test if a row (not a column) contains at least one NA.
Here a dataset
x = c(1:10, NA)
df = data.frame(A = sample(x), B = sample(x), C = sample(x))
And here a loop that test that with anyNA
df$Any_na = apply(df[,2:3], 1, anyNA)
df
A B C Any_na
1 NA 8 9 FALSE
2 5 9 NA TRUE
3 9 3 10 FALSE
4 7 5 1 FALSE
5 4 2 3 FALSE
6 10 4 6 FALSE
7 3 1 2 FALSE
8 6 6 5 FALSE
9 1 10 7 FALSE
10 2 NA 8 TRUE
11 8 7 4 FALSE
Upvotes: 2
Reputation: 179
This might help you get started :
# Sample dataframe
dfx <- data.frame(
x = c(21L, 21L, 21L, 22L, 22L, NA),
y = c(1449, 1814, 582, 582, 947, 183),
s = c(26.4, 28.7, 32, 25.3, NA, 25.7),
z = c(NA,NA,NA,NA,NA,NA)
)
# Sapply works well here
ifelse(sapply(dfx, function(x)all(is.na(x))) == TRUE, "Y","N")
output :
x y s z
"N" "N" "N" "Y"
Upvotes: 2