Reputation: 3024
Someone suggested that Hadoop does streaming, and have quoted Flume and Kafka as examples.
While I understand they might have streaming features, I wonder if they can be considered in the same league as stream processing technologies like Storm/Spark/Flink. Kafka is a 'publish-subscribe model messaging system' and Flume is a data ingestion tool. And even though they interact/integrae with hadoop are they technically part of 'hadoop' itself?
PS: I understand there is a Hadoop Streaming which is an entirely different thing.
Upvotes: 0
Views: 691
Reputation: 191738
Hadoop is only YARN, HDFS, and MapReduce. As a project, it does not accommodate (near) real time ingestion or processing.
Hadoop Streaming is a tool used to manipulate data between filesystem streams (standard input/output)
Kafka is not only a publish/subscribe message queue.
Kafka Connect is essentially a Kafka channel, in Flume terms. Various plug-ins exist for reading from different "sources", producing to Kafka, then "sinks" exist to consume from Kafka to databases or filesystems. From a consumer perspective, this is more scalable than singular Flume agents deployed across your infrastructure. If all you're looking for log ingestion into Kafka, personally I find Filebeat or Fluentd to be better than Flume (no Java dependencies).
Kafka Streams is a comparable product to Storm, Flink, and Samza, except the dependency upon YARN or any cluster scheduler doesn't exist, and it's possible to embed a Kafka Streams processor within any JVM compatible application (for example, a Java web application). You'd have difficulties trying to do that with Spark or Flink without introducing a dependency on some external system(s).
The only benefits of Flume, NiFi, Storm, Spark, etc. I find is that they compliment Kafka and they have Hadoop compatible integrations along with other systems used in the BigData space like Cassandra (see SMACK
stack)
So, to answer the question, you need to use other tools to allow streaming data to be processed and stored by Hadoop.
Upvotes: 1