Reputation: 231
After mapping by column c, If column A has a value, insert the value of column A; if not, insert column B.
data1 data2
a b c a c d
a1 b1 c1 1a c1 1d
b2 c2 2a c2 2d
a3 c3 3a c3 3d
4a c4 4d
The result I want
result
a b c
a1 b1 c1
2a b2 c2
a3 c3
I tried the following, but I was not satisfied.
->>> result = data1.merge(data2, on=['c'])
Prefixes _x and _y are created. combine_first is not applied.
->>> result = data1.combine_first(data2)
It is not mapped by column c.
How do I get good results? I ask for your help. thank you
Upvotes: 2
Views: 3212
Reputation: 153460
Using @IdoS setup:
import pandas as pd
data1 = pd.DataFrame({'a': ['a1', None, 'a3'],
'b': ['b1', 'b2', None],
'c': ['c1', 'c2', 'c3']})
data2 = pd.DataFrame({'a': ['1a', '2a', '3a', '4a'],
'c': ['c1', 'c2', 'c3', 'c4'],
'd': ['1d', '2d', '3d', '4d']})
You can use set_index
, combine_first
, and reindex:
df_out = data1.set_index('c').combine_first(data2.set_index('c'))\
.reindex(data1.c)\
.reset_index()
df_out
Output:
c a b d
0 c1 a1 b1 1d
1 c2 2a b2 2d
2 c3 a3 None 3d
Upvotes: 2
Reputation: 21709
You can try this way as well:
# set indexes
data1 = data1.set_index('c')
data2 = data2.set_index('c')
# join data on indexes
datax = data1.join(data2.drop('d', axis=1), rsuffix='_rr').reset_index()
# fill missing value in column a
datax['a'] = datax['a'].fillna(datax['a_rr'])
# drop unwanted columns
datax.drop('a_rr', axis=1, inplace=True)
# fill missing values with blank spaces
datax.fillna('', inplace=True)
# output
a b c
0 a1 b1 c1
1 2a b2 c2
2 a3 c3
# data used
data1 = pd.DataFrame({'a':['a1','','a3'],
'b':['b1','b2',''],
'c':['c1','c2','c3']})
data2 = pd.DataFrame({'a':['1a','2a','3a','4a'],
'c':['c1','c2','c3','c4'],
'd':['1d','2d','3d','4d']})
Upvotes: 1
Reputation: 1352
I'm not 100% clear on how you indexed your dataframes (data1
and data2
), but if you index them on column 'c'
it should work.
This is how I created your data:
import pandas as pd
data1 = pd.DataFrame({'a': ['a1', None, 'a3'],
'b': ['b1', 'b2', None],
'c': ['c1', 'c2', 'c3']})
data2 = pd.DataFrame({'a': ['1a', '2a', '3a', '4a'],
'c': ['c1', 'c2', 'c3', 'c4'],
'd': ['1d', '2d', '3d', '4d']})
I then set the index of both to be column 'c'
:
data1 = data1.set_index('c')
data2 = data2.set_index('c')
Then I use combine_first
as you do:
data_combined = data1.combine_first(data_2)
And I get this:
a b d
c
c1 a1 b1 1d
c2 2a b2 2d
c3 a3 None 3d
c4 4a NaN 4d
Not sure why you don't want the row with index 'c4'
or column 'd'
, but it's easy enough to remove them:
data_combined = data_combined.drop('d', axis=1)
data_combined = data_combined.loc[data_combined.index != 'c4']
And then I do some re-ordering to get your desired result:
data_combined = data_combined.reset_index()
data_combined = data_combined[['a', 'b', 'c']]
data_combined = data_combined.fillna('')
a b c
0 a1 b1 c1
1 2a b2 c2
2 a3 c3
Upvotes: 1