abhijit dalavi
abhijit dalavi

Reputation: 9

How to build word embedding model using Tflearn?

Updated

I am working on the word embedding model for answer Matching score prediction using Tflearn. I have to build a model using sentence vector using tflearn dnn classifier, Now I have to add a word embedding layer to the dnn model. How to do that? Thanks in advance.

"JVMdefines": enables a computer to run a Java program

is coverted as :

"JVMdefines": [[list([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

enables a computer to run a Java program : list([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]

My question: Is there any method that the machine can able to analyze.

enables a "machine" to run a Java program

That is It can detect computer and machine as in same meaning.

Upvotes: 0

Views: 386

Answers (1)

Nate Raw
Nate Raw

Reputation: 731

I would post a clarifying comment, but I do not have enough reputation to do so, so I will try to answer given the information you have presented in the original question...

Your problem seems unclear, but here is how you would do this for a binary classification problem in tflearn.

Step 1: Preprocessing

First thing you need to do is to tokenize and transform your sentences into list of integers:

"What kind of food do you like?" ---> [234,64,12,5224,43,96,23]

Then, most people pad their sequences to all be the same length, cutting off the long ones or increasing the length of short ones by padding with 0's.

[234,64,12,5224,43,96,23] ---> [0,0,0,0....234,64,12,5224,43,96,23]

Hint:

from tflearn.data_utils import pad_sequences
padded = pad_sequences(unpadded, maxlen=max_document_length, value=0.)

Step 2: Model Building

After you transform all the text you have into integer sequences, you can build the model. Note here that our input shape is [None, max_document_length]. None means optional size (allows for variable batch size), and max_document_length is the length of our sequences that we padded previously.

#Create our model
network = input_data(shape=[None, max_document_length], name='input')

Create embedding matrix. Note that you push the embedding matrix to the CPU. The input dim parameter is looking for an integer that represents the size of your vocabulary. the output_dim is the size of your embedding.

with tf.device('/cpu:0'):
    network = tflearn.embedding(network, input_dim=vocabulary_size, output_dim=128)

#Pass embeddings into an lstm layer (handles sequential problems)
network = tflearn.lstm(network, 512, dropout=0.8)

#Squish data into a fully connected layer, with 2 outputs for binary classification
network = tflearn.fully_connected(network, 2, activation='softmax')

#Perform regression to get the final anaswer
network = tflearn.regression(network, optimizer='rmsprop', learning_rate=0.001,
                         loss='categorical_crossentropy')

#Wrap the graph we just created in a tflearn DNN wrapper
model = tflearn.DNN(network)

#Run model.fit to actually train your model
model.fit(x_train, y_train, n_epoch=15, shuffle=True, validation_set=(x_val, y_val), show_metric=True, batch_size=batch_size)

Upvotes: 2

Related Questions