Reputation: 79
I am trying to calculate something similar to a weighted matrix inner product in Fortran. The current script that I am using for calculating the inner product is as follows
! --> In
real(kind=8), intent(in), dimension(ni, nj, nk, nVar) :: U1, U2
real(kind=8), intent(in), dimension(ni, nj, nk) :: intW
! --> Out
real(kind=8), intent(out) :: innerProd
! --> Local
integer :: ni, nj, nk, nVar, iVar
! --> Computing inner product
do iVar = 1, nVar
innerProd = innerProd + sum(U1(:,:,:,iVar)*U2(:,:,:,iVar)*intW)
enddo
But I found that the above script that I am currently using is not very efficient. The same operation can be performed in Python using NumPy as follows,
import numpy as np
import os
# --> Preventing numpy from multi-threading
os.environ['OPENBLAS_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
innerProd = 0
# --> Toy matrices
U1 = np.random.random((ni,nj,nk,nVar))
U2 = np.random.random((ni,nj,nk,nVar))
intW = np.random.random((ni,nj,nk))
# --> Reshaping
U1 = np.reshape(np.ravel(U1), (ni*nj*nk, nVar))
U2 = np.reshape(np.ravel(U1), (ni*nj*nk, nVar))
intW = np.reshape(np.ravel(intW), (ni*nj*nk))
# --> Calculating inner product
for iVar in range(nVar):
innerProd = innerProd + np.dot(U1[:, iVar], U2[:, iVar]*intW)
The second method using Numpy seems to be far more faster than the method using Fortran. For a specific case of ni = nj = nk = nVar = 130
, the time taken by the two methods are as follows
fortran_time = 25.8641 s
numpy_time = 6.8924 s
I tried improving my Fortran code with ddot
from BLAS as follows,
do iVar = 1, nVar
do k = 1, nk
do j = 1, nj
innerProd = innerProd + ddot(ni, U1(:,j,k,iVar), 1, U2(:,j,k,iVar)*intW(:,j,k), 1)
enddo
enddo
enddo
But there was no considerable improvement in time. The time taken by the above method for the case of ni = nj = nk = nVar = 130
is ~24s
. (I forgot to mention that I compiled the Fortran code with '-O2' option for optimizing the performance).
Unfortunately, there is no BLAS function for element-wise matrix multiplication in Fortran. And I don't want to use reshape in Fortran because unlike python reshaping in Fortran will lead to copying my array to a new array leading to more RAM usage.
Is there any way to speed up the performance in Fortran so as to get close to the performance of Numpy?
Upvotes: 2
Views: 1451
Reputation: 13196
I had the same observation comparing Numpy and Fortran code.
The difference turns out to be the version of BLAS, I found using DGEMM
from netlib is similar to looping and about three times slower than OpenBLAS (see profiles in this answer).
The most surprising thing for me was that OpenBLAS provides code which is so much faster than just compiling a Fortran triple nested loop. It seems this is the whole point of GotoBLAS, which was handwritten in assembly code for the processor architecture.
Even timing the right thing, ordering loops correctly, avoiding copies and using every optimising flag (in gfortran), the performance is still about three times slower than OpenBLAS. I've not tried ifort or pgi, but I wonder if this explains the upvoted comment by @kvantour "loop finishes in 0.6s for me" (note intrinsic matmul is replaced by BLAS in some implementations).
Upvotes: 1
Reputation: 2148
You may not be timing what you think are timing. Here's a complete fortran example
program test
use iso_fortran_env, r8 => real64
implicit none
integer, parameter :: ni = 130, nj = 130, nk = 130, nvar = 130
real(r8), allocatable :: u1(:,:,:,:), u2(:,:,:,:), w(:,:,:)
real(r8) :: sum, t0, t1
integer :: i,j,k,n
call cpu_time(t0)
allocate(u1(ni,nj,nk,nvar))
allocate(u2(ni,nj,nk,nvar))
allocate(w(ni,nj,nk))
call cpu_time(t1)
write(*,'("allocation time(s):",es15.5)') t1-t0
call cpu_time(t0)
call random_seed()
call random_number(u1)
call random_number(u2)
call random_number(w)
call cpu_time(t1)
write(*,'("random init time (s):",es15.5)') t1-t0
sum = 0.0_r8
call cpu_time(t0)
do n = 1, nvar
do k = 1, nk
do j = 1, nj
do i = 1, ni
sum = sum + u1(i,j,k,n)*u2(i,j,k,n)*w(i,j,k)
end do
end do
end do
end do
call cpu_time(t1)
write(*,'("Sum:",es15.5," time(s):",es15.5)') sum, t1-t0
end program
And the output:
$ gfortran -O2 -o inner_product inner_product.f90
$ time ./inner_product
allocation time(s): 3.00000E-05
random init time (s): 5.73293E+00
Sum: 3.57050E+07 time(s): 5.69066E-01
real 0m6.465s
user 0m4.634s
sys 0m1.798s
Computing the inner product is less that 10% of the runtime in this fortran code. How/What you are timing is very important. Are you sure you are timing the same things in the fortran and python versions? Are you sure you are only timing the inner_product calculation?
Upvotes: 2
Reputation: 6989
This avoids making any copy. (note the blas ddot
approach still needs to make a copy for the element-wise product)
subroutine dot3(n,a,b,c,result)
implicit none
real(kind=..) a(*),b(*),c(*),result
integer i,n
result=0
do i=1,n
result=result+a(i)*b(i)*c(i)
enddo
end
dot3
is external, meaning not in a module/contains construct. kind
should obviously match main declaration.
in main code:
innerprod=0
do iVar = 1, nVar
call dot3(ni*nj*nk, U1(1,1,1,iVar),U2(1,1,1,iVar),intW,result)
innerProd=innerProd+result
enddo
Upvotes: 1