Reputation: 3337
I have a function that takes in a dataframe, a percentile threshold, and the name of a given column, and computes all values that are above this threshold in the given column as a new column (0 for <, and 1 for >=). However, it won't allow me to do the df$column_name
inside the quantile
function because column_name
is not actually a column name, but a variable storing the actual column name. Therefore df$column_name
will return NULL
. Is there any way to work around this and keep the code forma somewhat similar to what it is currently? Or do I have to specify the actual numerical column value instead of the name? While I can do this, it is definitely not as convenient/comprehensible as just passing in the column name.
func1 <- function(df, threshold, column_name) {
threshold_value <- quantile(df$column_name, c(threshold))
new_df <- df %>%
mutate(ifelse(column_name > threshold_value, 1, 0))
return(new_df)
}
Thank you so much for your help!
Upvotes: 3
Views: 1697
Reputation: 39154
I modified your function as follows. Now the function can take a data frame, a threshold, and a column name. This function only needs the base R.
# Modified function
func1 <- function(df, threshold, column_name) {
threshold_value <- quantile(df[[column_name]], threshold)
new_df <- df
new_df[["new_col"]] <- ifelse(df[[column_name]] > threshold_value, 1, 0)
return(new_df)
}
# Take the trees data frame as an example
head(trees)
# Girth Height Volume
# 1 8.3 70 10.3
# 2 8.6 65 10.3
# 3 8.8 63 10.2
# 4 10.5 72 16.4
# 5 10.7 81 18.8
# 6 10.8 83 19.7
# Apply the function
func1(trees, 0.5, "Volume")
# Girth Height Volume new_col
# 1 8.3 70 10.3 0
# 2 8.6 65 10.3 0
# 3 8.8 63 10.2 0
# 4 10.5 72 16.4 0
# 5 10.7 81 18.8 0
# 6 10.8 83 19.7 0
# 7 11.0 66 15.6 0
# 8 11.0 75 18.2 0
# 9 11.1 80 22.6 0
# 10 11.2 75 19.9 0
# 11 11.3 79 24.2 0
# 12 11.4 76 21.0 0
# 13 11.4 76 21.4 0
# 14 11.7 69 21.3 0
# 15 12.0 75 19.1 0
# 16 12.9 74 22.2 0
# 17 12.9 85 33.8 1
# 18 13.3 86 27.4 1
# 19 13.7 71 25.7 1
# 20 13.8 64 24.9 1
# 21 14.0 78 34.5 1
# 22 14.2 80 31.7 1
# 23 14.5 74 36.3 1
# 24 16.0 72 38.3 1
# 25 16.3 77 42.6 1
# 26 17.3 81 55.4 1
# 27 17.5 82 55.7 1
# 28 17.9 80 58.3 1
# 29 18.0 80 51.5 1
# 30 18.0 80 51.0 1
# 31 20.6 87 77.0 1
If you still want to use dplyr, it is essential to learn how to deal with non-standard evaluation. Please see this to learn more (https://cran.r-project.org/web/packages/dplyr/vignettes/programming.html). The following code will also works.
library(dplyr)
func2 <- function(df, threshold, column_name) {
col_en <- enquo(column_name)
threshold_value <- quantile(df %>% pull(!!col_en), threshold)
new_df <- df %>%
mutate(new_col := ifelse(!!col_en >= threshold_value, 1, 0))
return(new_df)
}
func2(trees, 0.5, Volume)
# Girth Height Volume new_col
# 1 8.3 70 10.3 0
# 2 8.6 65 10.3 0
# 3 8.8 63 10.2 0
# 4 10.5 72 16.4 0
# 5 10.7 81 18.8 0
# 6 10.8 83 19.7 0
# 7 11.0 66 15.6 0
# 8 11.0 75 18.2 0
# 9 11.1 80 22.6 0
# 10 11.2 75 19.9 0
# 11 11.3 79 24.2 1
# 12 11.4 76 21.0 0
# 13 11.4 76 21.4 0
# 14 11.7 69 21.3 0
# 15 12.0 75 19.1 0
# 16 12.9 74 22.2 0
# 17 12.9 85 33.8 1
# 18 13.3 86 27.4 1
# 19 13.7 71 25.7 1
# 20 13.8 64 24.9 1
# 21 14.0 78 34.5 1
# 22 14.2 80 31.7 1
# 23 14.5 74 36.3 1
# 24 16.0 72 38.3 1
# 25 16.3 77 42.6 1
# 26 17.3 81 55.4 1
# 27 17.5 82 55.7 1
# 28 17.9 80 58.3 1
# 29 18.0 80 51.5 1
# 30 18.0 80 51.0 1
# 31 20.6 87 77.0 1
Upvotes: 6