Reputation: 309
I've a csv file like this:
Fruit_Type;Fruit_Color;Fruit_Description
Apple;Green,Red,Yellow;Just an apple
Banana;Green,Yellow;Just a Banana
Orange;Red,Yellow;Just an Orange
Grape;;Just a Grape
( Note: There're commas inside of a cell and the colors type number is variable with a maximum of three different colors )
My desired result is:
Fruit_Type;Fruit_Color;Fruit_Description
Apple;Green;0;0;Just an apple
Apple;0;Red;0;Just an apple
Apple;0;0;Yellow;Just an apple
Banana;Green;0;0;Just a Banana
Banana;0;Red;0;Just a Banana
Banana;0;0;Yellow;Just a Banana
Orange;Green;0;0;Just an Orange
Orange;0;Red;0;Just an Orange
Orange;0;0;Yellow;Just an Orange
Grape;0;0;0;Just a Grape
Grape;0;0;0;Just a Grape
Grape;0;0;0;Just a Grape
I want to split the dataframe Fruit_Color column into 3 columns with a 0 value on those colors what aren't present.
I've tryed to convert the dataframe info dataframes like this to get the lines what contais some string:
test.py
#load the csv data into dataframe
data = pd.read_csv(open('test.py','rb'),delimiter=';',encoding='utf-8')
#detect the rows where're the color
Green = data.loc[data['Fruit_Color'].str.contains('Green', case=True)]
Red = data.loc[data['Fruit_Color'].str.contains('Red', case=True)]
Yellow = data.loc[data['Fruit_Color'].str.contains('Yellow', case=True)]
With that i've the rows what contains specific color but i dont know how i can make the joined dataframe with those dataframes and also how can i know those rows what doesn't have any color like the Grape ?
Thanks in advance.
Upvotes: 1
Views: 1693
Reputation: 863291
I suggest use str.get_dummies
:
df = df.join(df.pop('Fruit_Color').str.get_dummies(','))
print (df)
Fruit_Type Fruit_Description Green Red Yellow
0 Apple Just an apple 1 1 1
1 Banana Just a Banana 1 0 1
2 Orange Just an Orange 0 1 1
3 Grape Just a Grape 0 0 0
Upvotes: 1
Reputation: 2790
You can create the columns using assign
:
df.assign(
green=lambda d: d['Fruit_color'].str.contains('Green', case=True),
red=lambda d: d['Fruit_color'].str.contains('Red', case=True),
yellow=lambda d: d['Fruit_color'].str.contains('Yellow', case=True),
)
This results in a new dataframe with three additional columns of Booleans, namely "green", "red" and "yellow".
To detect a row with no known colour, you can also assign other_color=lambda d: ~(d['green'] | d['red'] | d['yellow'])
.
Another possibility is to use pandas.concat
to concatenate multiple dataframes, but it's less elegant than the above solution.
Upvotes: 0