Reputation: 67
I have a database with sample as below:
Data frame is generated when I load data in Python as per below code
import os
import pandas as pd
data_dir="D:\\userdata\\adbharga\\Desktop\\AVA\\PythonCoding\\VF-Aus\\4G Cell Graphs"
os.chdir(data_dir)
df = pd.read_csv('CA Throughput(Kbit_s) .csv',index_col=None, header=0)
Output:
Is there any way by which we can avoid reading duplicate columns in Pandas, or remove the duplicate columns post reading. Pl Note: Column Name is different once data is read in Pandas, so command like df=df.loc[:,~df.columns.duplicated()] won't work. Actual database is very big and has many duplicate column with Dates only.
Upvotes: 3
Views: 2295
Reputation: 164673
There are 2 ways you can do this.
Ignore columns when reading the data
pandas.read_csv
has the argument usecols
, which accepts an integer list.
So you can try:
# work out required columns
df = pd.read_csv('file.csv', header=0)
cols = [0] + list(range(1, len(df.columns), 2))
# use column integer list
df = pd.read_csv('file.csv', usecols=cols)
Remove columns from dataframe
You can use similar logic with pd.DataFrame.iloc
to remove unwanted columns.
# cols as defined in previous example
df = df.iloc[:, cols]
Upvotes: 3
Reputation: 18916
One way of do it could be to read only the first row and create a mask using drop_duplicates()
. This we pass to the usecols without the need to specify the index beforehand. It should be failsafe.
m = pd.read_csv(pd.compat.StringIO(data),nrows=1, header=None).T.drop_duplicates().index
df = pd.read_csv(pd.compat.StringIO(data), usecols=m)
Full example:
import pandas as pd
data = '''\
Date,Value1,Date,Value2
2018-01-01,0,2018-01-01,1
2018-01-02,0,2018-01-02,1'''
m = pd.read_csv(pd.compat.StringIO(data),nrows=1, header=None).T.drop_duplicates().index
df = pd.read_csv(pd.compat.StringIO(data), usecols=m)
print(df)
# Date Value1 Value2
#0 2018-01-01 0 1
#1 2018-01-02 0 1
Another way to do it would be to remove all columns with a dot inside .
. This should work in most cases as the dot is rarely used in column names:
df = df.loc[:,~df.columns.str.contains('.', regex=False)]
Full example:
import pandas as pd
data = '''\
Date,Value1,Date,Value2
2018-01-01,0,2018-01-01,1
2018-01-02,0,2018-01-02,1'''
df = pd.read_csv(pd.compat.StringIO(data))
df = df.loc[:,~df.columns.str.contains('.', regex=False)]
print(df)
# Date Value1 Value2
#0 2018-01-01 0 1
#1 2018-01-02 0 1
Upvotes: 1