Reputation: 89
I would like to create a function that returns a function of the product of a list of functions. The list of functions should be of variable length and the functions should have different parameters.
E.g.:
def f(a, b, **kwargs):
return a + b
def g(c, d, **kwargs):
return c + d
def product_function(function_list, **kwargs):
...
<create function that returns product function of functions in
function_list>
...
return <productfunction>
In the example above this would be something like:
my_function = product_function([f,g])
This should return a function that can be used as if it was defined as:
def my_function(a, b, c, d):
return f(a, b) * g(c, d)
I would like to use this for iterating over a list of combinations of factors and optimising parameters for these combinations to select the most predictive one in a data science project.
Upvotes: 0
Views: 419
Reputation: 43156
You can do this with some help from the introspection utilities in the inspect
module.
Specifically, I used inspect.signature
to find each function's positional and keyword arguments, and Signature.bind_partial
to prevent clashes between positional and keyword arguments. The following is a generic implementation of a function that combines other functions:
import inspect
def generic_operator_function(operator_function, default_value,
function_list, **kwargs):
POSITIONALS = {inspect.Parameter.POSITIONAL_ONLY,
inspect.Parameter.POSITIONAL_OR_KEYWORD}
KEYWORDS = {inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.KEYWORD_ONLY}
# if no functions were given, return the default value
if not function_list:
return lambda: default_value
# for each function in the list, find out how many positional
# arguments it accepts. Also find out which keyword arguments
# it accepts.
arg_maps = []
kwarg_names = []
for func in function_list:
sig = inspect.signature(func)
params = sig.parameters.values()
# count the positional arguments and map them to
# parameter names
bound_args = sig.bind_partial(**kwargs).arguments
arg_map = [param.name for param in params if param.kind in POSITIONALS
and param.name not in bound_args]
arg_maps.append(arg_map)
# find the names of all keyword arguments
if any(param.kind == inspect.Parameter.VAR_KEYWORD for param in params):
kwnames = True
else:
kwnames = {param.name for param in params if param.kind in KEYWORDS}
kwarg_names.append(kwnames)
# return a function that iterates through the function_list and
# multiplies all results
def combined_func(*args, **inner_kwargs):
value = default_value
i = 0
for func, arg_map, kwnames in zip(function_list, arg_maps, kwarg_names):
# if the function takes **kwargs, pass all kwargs. Otherwise, pass
# only those that it supports.
kw_arguments = kwargs.copy()
kw_arguments.update(inner_kwargs)
if kwnames is not True:
kw_arguments = {k: v for k, v in kw_arguments.items() if k in kwnames}
# take the next batch of arguments, but only those that aren't already
# provided as keyword arguments
arg_map = [arg for arg in arg_map if arg not in kw_arguments]
numparams = len(arg_map)
arguments = args[i:i+numparams]
kw_arguments.update({arg: value for arg, value in zip(arg_map, arguments)})
# call the function
retval = func(**kw_arguments)
value = operator_function(value, retval)
i += numparams
return value
return combined_func
With this, you can easily define a bunch of functions similar to your product_function
:
import operator
def product_function(*args, **kwargs):
return generic_operator_function(operator.mul, 1, *args, **kwargs)
def sum_function(*args, **kwargs):
return generic_operator_function(operator.add, 0, *args, **kwargs)
def append_function(*args, **kwargs):
return generic_operator_function(lambda x, y: x+[y], [], *args, **kwargs)
>>> my_function = product_function([f,g])
>>> my_function(1,2, 3,4)
21
>>> sum_function([f,g])(1,2, 3,4)
10
>>> append_function([f,g])(1,2, 3,4)
[3, 7]
And it correctly passes on only those keyword arguments that each function supports:
>>> p = product_function([f,g], a=1, c=2)
>>> p(3, 4)
24
Upvotes: 1