Reputation: 21
I'm not quite sure why I'm getting this error or what it means. My data frame is called "data."
library(dplyr)
data %>%
filter(Info==1, Male==1) %>%
lm(CFL_Purchased ~ Male) %>%
summary()
Thanks!
Upvotes: 2
Views: 14444
Reputation: 1438
This worked for me:
library(dplyr)
dat <- data.frame(x = rnorm(10000, 4, 3),
y = rnorm(10000, 2, 2))
dat %>%
lm(y ~ x,.) %>%
summary()
Call:
lm(formula = y ~ x, data = .)
Residuals:
Min 1Q Median 3Q Max
-7.5620 -1.3678 -0.0307 1.3625 8.0371
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.952941 0.033064 59.065 <2e-16 ***
x 0.008841 0.006617 1.336 0.182
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.001 on 9998 degrees of freedom
Multiple R-squared: 0.0001785, Adjusted R-squared: 7.852e-05
F-statistic: 1.785 on 1 and 9998 DF, p-value: 0.1815
Edited to add base pipe option:
dat <- data.frame(x = rnorm(10000, 4, 3),
y = rnorm(10000, 2, 2))
dat |>
lm(formula = y ~ x) |>
summary()
Call:
lm(formula = y ~ x, data = dat)
Residuals:
Min 1Q Median 3Q Max
-8.6279 -1.3734 0.0017 1.3711 9.1955
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.04624 0.03379 60.559 <2e-16 ***
x -0.01079 0.00675 -1.598 0.11
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.033 on 9998 degrees of freedom
Multiple R-squared: 0.0002555, Adjusted R-squared: 0.0001555
F-statistic: 2.555 on 1 and 9998 DF, p-value: 0.11
Upvotes: 3