Reputation: 121
I'm trying to plot a precision/recall score curve. This is the code I have:
lbl_enc = preprocessing.LabelEncoder()
labels = lbl_enc.fit_transform(test_tags)
y_score = clf.predict_proba(test_set)
average_precision = average_precision_score(labels, y_score)
print('Average precision-recall score: {0:0.2f}'.format(average_precision))
precision, recall, _ = precision_recall_curve(labels, y_score)
plt.step(recall, precision, color='b', alpha=0.2,
where='post')
plt.fill_between(recall, precision, step='post', alpha=0.2,
color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('2-class Precision-Recall curve: Average P-R = {0:0.2f}'.format(
average_precision))
At the point I'm calculating the average_precision_score, I get this "ValueError: bad input shape (119, 2)" that is caused by the "y_score" variable.
y_score is in this format:
array([[0.45953712, 0.54046288],
[0.78289908, 0.21710092],
[0.13488789, 0.86511211],
[0.56162583, 0.43837417],
(...)
[0.4595595 , 0.5404405 ]])
while labels is in this:
array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1])
How can I make this work for calculating avg precision score? Thanks in advance.
Upvotes: 0
Views: 586
Reputation: 1140
In the documentation, it says:
y_score : array, shape = [n_samples] or [n_samples, n_classes]
Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by “decision_function” on some classifiers).
Therefore I believe you just need to do:
average_precision = average_precision_score(labels, y_score[:,1])
Upvotes: 2