Reputation: 612
So I ran a very thorough GridSearch with 10-fold cross-val in an integrated pipeline in the following manner-
pipeline_rf = Pipeline([
('standardize', MinMaxScaler()),
('grid_search_lr', GridSearchCV(
RandomForestClassifier(),
param_grid={'bootstrap': [True],
'max_depth': [50, 100, 150, 200],
'max_features': ['auto', 'sqrt'],
'min_samples_leaf': [1, 2, 4],
'min_samples_split': [2, 5, 10],
'n_estimators': [100, 200, 500, 1000, 1500]},
cv=10,
n_jobs=-1,
scoring='roc_auc',
verbose=2,
refit=True
))
])
pipeline_rf.fit(X_train, y_train)
How should I go about extracting the best set of parameters?
Upvotes: 0
Views: 610
Reputation: 36619
You first need to get the gridSearchCV object from the pipeline, and then call best_params_
on it. This can be done by:
pipeline_rf.named_steps['grid_search_lr'].best_params_
Upvotes: 3