Reputation: 111
I'm trying to learn the new Tensorflow APIs and I am a bit lost on where to get a handle on my input batch tensors so I can manipulate and augment them with for example tf.image.
This is the my current network & pipeline:
trainX, testX, trainY, testY = read_data()
# trainX [num_image, height, width, channels], these are numpy arrays
#...
train_dataset = tf.data.Dataset.from_tensor_slices((trainX, trainY))
test_dataset = tf.data.Dataset.from_tensor_slices((testX, testY))
#...
iterator = tf.data.Iterator.from_structure(train_dataset.output_types,
train_dataset.output_shapes)
features, labels = iterator.get_next()
train_init_op = iterator.make_initializer(train_dataset)
test_init_op = iterator.make_initializer(test_dataset)
#...defining cnn architecture...
# In the train loop
TrainLoop {
sess.run(train_init_op) # switching to train data
sess.run(train_step, ...) # running a train step
#...
sess.run(test_init_op) # switching to test data
test_loss = sess.run(loss, ...) # printing test loss after epoch
}
I'm using the Dataset API creating 2 datasets so that in the trainloop I can calculate the train and test loss and log them.
Where in this pipeline would I manipulate and distort my input batch of images?
I'm not creating any tf.placeholders for my trainX input batches so I can't manipulate them with tf.image because for example tf.image.flip_up_down
requires a 3-D or 4-D tensor.
Upvotes: 0
Views: 4097
Reputation: 4183
There's a really good article and talk released recently that go over the API in a lot more detail than my response here. Here's a brief example:
import tensorflow as tf
import numpy as np
def read_data():
n_train = 100
n_test = 50
height = 20
width = 30
channels = 3
trainX = (np.random.random(
size=(n_train, height, width, channels)) * 255).astype(np.uint8)
testX = (np.random.random(
size=(n_test, height, width, channels))*255).astype(np.uint8)
trainY = (np.random.random(size=(n_train,))*10).astype(np.int32)
testY = (np.random.random(size=(n_test,))*10).astype(np.int32)
return trainX, testX, trainY, testY
trainX, testX, trainY, testY = read_data()
# trainX [num_image, height, width, channels], these are numpy arrays
train_dataset = tf.data.Dataset.from_tensor_slices((trainX, trainY))
test_dataset = tf.data.Dataset.from_tensor_slices((testX, testY))
def map_single(x, y):
print('Map single:')
print('x shape: %s' % str(x.shape))
print('y shape: %s' % str(y.shape))
x = tf.image.per_image_standardization(x)
# Consider: x = tf.image.random_flip_left_right(x)
return x, y
def map_batch(x, y):
print('Map batch:')
print('x shape: %s' % str(x.shape))
print('y shape: %s' % str(y.shape))
# Note: this flips ALL images left to right. Not sure this is what you want
# UPDATE: looks like tf documentation is wrong and you need a 3D tensor?
# return tf.image.flip_left_right(x), y
return x, y
batch_size = 32
train_dataset = train_dataset.repeat().shuffle(100)
train_dataset = train_dataset.map(map_single, num_parallel_calls=8)
train_dataset = train_dataset.batch(batch_size)
train_dataset = train_dataset.map(map_batch)
train_dataset = train_dataset.prefetch(2)
test_dataset = test_dataset.map(
map_single, num_parallel_calls=8).batch(batch_size).map(map_batch)
test_dataset = test_dataset.prefetch(2)
iterator = tf.data.Iterator.from_structure(train_dataset.output_types,
train_dataset.output_shapes)
features, labels = iterator.get_next()
train_init_op = iterator.make_initializer(train_dataset)
test_init_op = iterator.make_initializer(test_dataset)
with tf.Session() as sess:
sess.run(train_init_op)
feat, lab = sess.run((features, labels))
print(feat.shape)
print(lab.shape)
sess.run(test_init_op)
feat, lab = sess.run((features, labels))
print(feat.shape)
print(lab.shape)
A few notes:
tf.data.Dataset.from_generator
. This can lead to slow shuffle times if your shuffle buffer is large. My preferred method is to load some keys
tensor entirely into memory - it might just be the indices of each example - then map
that key value to data values using tf.py_func
. This is slightly less efficient than converting to tfrecords
, but with prefetching
it likely won't affect performance. Since the shuffling is done before the mapping, you only have to load shuffle_buffer
keys into memory, rather than shuffle_buffer
examples.tf.data.Dataset.map
either before or after the batch operation, depending on whether or not you want to apply a batch-wise operation (something working on a 4D image tensor) or element-wise operation (3D image tensor). Note it looks like the documentation for tf.image.flip_left_right
is out of date, since I get an error when I try and use a 4D tensor. If you want to augment you data randomly, use tf.image.random_flip_left_right
rather than tf.image.flip_left_right
.tf.estimator.Estimator
(or wouldn't mind converting your code to using it), then check out tf.estimator.train_and_evaluate
for an in-built way of switching between datasets.shuffle
/repeat
methods. See the article for notes on efficiencies. In particular, repeat -> shuffle -> map -> batch -> batch-wise map -> prefetch seems to be the best ordering of operations for most applications.Upvotes: 5