Reputation: 795
I have a Pandas Dataframe with a column (ip
) with certain values and another Pandas Series not in this DataFrame with a collection of these values. I want to create a column in the DataFrame that is 1 if a given line has its ip
in my Pandas Series (black_ip
).
import pandas as pd
dict = {'ip': {0: 103022, 1: 114221, 2: 47902, 3: 23550, 4: 84644}, 'os': {0: 23, 1: 19, 2: 17, 3: 13, 4: 19}}
df = pd.DataFrame(dict)
df
ip os
0 103022 23
1 114221 19
2 47902 17
3 23550 13
4 84644 19
blacklist = pd.Series([103022, 23550])
blacklist
0 103022
1 23550
My question is: how can I create a new column in df
such that it shows 1 when the given ip
in the blacklist and zero otherwise?
Sorry if this too dumb, I'm still new to programming. Thanks a lot in advance!
Upvotes: 3
Views: 3720
Reputation: 51335
Slow, but simple and readable method:
Another way to do this would be to use create your new column using a list comprehension, set to assign a 1 if your ip
value is in blacklist
and a 0 otherwise:
df['new_column'] = [1 if x in blacklist.values else 0 for x in df.ip]
>>> df
ip os new_column
0 103022 23 1
1 114221 19 0
2 47902 17 0
3 23550 13 1
4 84644 19 0
EDIT: Faster method building on Categorical
: If you want to maximize speed, the following would be quite fast, though not quite as fast as the .isin
non-categorical method. It builds on the use of pd.Categorical
as suggested by @jezrael, but leveraging it's capacity for assigning categories:
df['new_column'] = pd.Categorical(df['ip'],
categories = blacklist.unique()).notnull().astype(int)
Timings:
import numpy as np
import pandas as pd
np.random.seed(4545)
N = 10000
df = pd.DataFrame(np.random.randint(1000,size=N), columns=['ip'])
blacklist = pd.Series(np.random.randint(500,size=int(N/100)))
%timeit df['ip'].isin(blacklist).astype(np.int8)
# 453 µs ± 8.81 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit pd.Categorical(df['ip'].isin(blacklist).astype(np.int8))
# 892 µs ± 17.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit pd.Categorical(df['ip'], categories = \
blacklist.unique()).notnull().astype(int)
# 565 µs ± 32.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Upvotes: 0
Reputation: 862481
df['new'] = df['ip'].isin(blacklist).astype(np.int8)
Also is possible convert column to categorical
s:
df['new'] = pd.Categorical(df['ip'].isin(blacklist).astype(np.int8))
print (df)
ip os new
0 103022 23 1
1 114221 19 0
2 47902 17 0
3 23550 13 1
4 84644 19 0
For interesting in large DataFrame
converting to Categorical
not save memory:
df = pd.concat([df] * 10000, ignore_index=True)
df['new1'] = pd.Categorical(df['ip'].isin(blacklist).astype(np.int8))
df['new2'] = df['ip'].isin(blacklist).astype(np.int8)
df['new3'] = df['ip'].isin(blacklist)
print (df.memory_usage())
Index 80
ip 400000
os 400000
new1 50096
new2 50000
new3 50000
dtype: int64
Timings:
np.random.seed(4545)
N = 10000
df = pd.DataFrame(np.random.randint(1000,size=N), columns=['ip'])
print (len(df))
10000
blacklist = pd.Series(np.random.randint(500,size=int(N/100)))
print (len(blacklist))
100
In [320]: %timeit df['ip'].isin(blacklist).astype(np.int8)
465 µs ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [321]: %timeit pd.Categorical(df['ip'].isin(blacklist).astype(np.int8))
915 µs ± 49.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [322]: %timeit pd.Categorical(df['ip'], categories = blacklist.unique()).notnull().astype(int)
1.59 ms ± 20.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [323]: %timeit df['new_column'] = [1 if x in blacklist.values else 0 for x in df.ip]
81.8 ms ± 2.72 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Upvotes: 4