Reputation: 34609
I have an m x m sparse matrix similarities
and a vector with m elements, combined_scales
. I wish to multiply the ith column in similarities
by combined_scales[i]
. Here's my first attempt at this:
for i in range(m):
scale = combined_scales[i]
similarities[:, i] *= scale
This is semantically correct but was performing poorly, so I tried changing it to this:
# sparse.diags creates a diagonal matrix.
# docs: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.diags.html
similarities *= sparse.diags(combined_scales)
But I immediately got a MemoryError
when running this line. Bizarrely, it seems that scipy is attempting to allocate a dense numpy array here:
Traceback (most recent call last):
File "main.py", line 108, in <module>
loop.run_until_complete(main())
File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\asyncio\base_events.py", line 466, in run_until_complete
return future.result()
File "main.py", line 100, in main
magic.fit(df)
File "C:\cygwin64\home\james\code\py\relativity\ml.py", line 127, in fit
self._scale_similarities(X, net_similarities)
File "C:\cygwin64\home\james\code\py\relativity\ml.py", line 148, in _scale_similarities
similarities *= sparse.diags(combined_scales)
File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\scipy\sparse\base.py", line 440, in __mul__
return self._mul_sparse_matrix(other)
File "C:\Users\james\AppData\Local\Programs\Python\Python36-32\lib\site-packages\scipy\sparse\compressed.py", line 503, in _mul_sparse_matrix
data = np.empty(nnz, dtype=upcast(self.dtype, other.dtype))
MemoryError
How do I prevent it from allocating a dense array here? Thanks.
Upvotes: 2
Views: 554
Reputation: 231665
From sparse.compressed
class _cs_matrix # common for csr and csc
def _mul_sparse_matrix(self, other):
M, K1 = self.shape
K2, N = other.shape
major_axis = self._swap((M,N))[0]
other = self.__class__(other) # convert to this format
idx_dtype = get_index_dtype((self.indptr, self.indices,
other.indptr, other.indices),
maxval=M*N)
indptr = np.empty(major_axis + 1, dtype=idx_dtype)
fn = getattr(_sparsetools, self.format + '_matmat_pass1')
fn(M, N,
np.asarray(self.indptr, dtype=idx_dtype),
np.asarray(self.indices, dtype=idx_dtype),
np.asarray(other.indptr, dtype=idx_dtype),
np.asarray(other.indices, dtype=idx_dtype),
indptr)
nnz = indptr[-1]
idx_dtype = get_index_dtype((self.indptr, self.indices,
other.indptr, other.indices),
maxval=nnz)
indptr = np.asarray(indptr, dtype=idx_dtype)
indices = np.empty(nnz, dtype=idx_dtype)
data = np.empty(nnz, dtype=upcast(self.dtype, other.dtype))
fn = getattr(_sparsetools, self.format + '_matmat_pass2')
fn(M, N, np.asarray(self.indptr, dtype=idx_dtype),
np.asarray(self.indices, dtype=idx_dtype),
self.data,
np.asarray(other.indptr, dtype=idx_dtype),
np.asarray(other.indices, dtype=idx_dtype),
other.data,
indptr, indices, data)
return self.__class__((data,indices,indptr),shape=(M,N))
similarities
is a sparse csr matrix. other
, the diag
matrix, has been converted to csr as well in
other = self.__class__(other)
csr_matmat_pass1
(compiled code) is run with the indices from self
and other
, returning nnz
, the number of nonzero terms in the output.
It then allocates the indptr
, indices
and data
arrays that will hold the results from csr_matmat_pass2
. These are used to create the return matrix
self.__class__((data,indices,indptr),shape=(M,N))
The error occurs in creating the data
array:
data = np.empty(nnz, dtype=upcast(self.dtype, other.dtype))
The return result just has too many nonzero values for your memory.
What is m
, and similarities.nnz
?
Is there enough memory to do similarities.copy()
?
While you are using similarities *= ...
, it first has to do similarities * other
. The result will then replace self
. It does not attempt to do an in-place multiplication.
There have been a lot of questions about faster iteration by rows (or columns), seeking to do things like sorting or getting the largest row values. Working directly with the csr
attributes can speed this up considerably. I think the idea applies here
Example:
In [275]: A = sparse.random(10,10,.2,'csc').astype(int)
In [276]: A.data[:] = np.arange(1,21)
In [277]: A.A
Out[277]:
array([[ 0, 0, 4, 0, 0, 0, 0, 0, 0, 0],
[ 0, 3, 0, 0, 0, 0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 10, 0, 0, 16, 18],
[ 0, 0, 0, 0, 0, 11, 14, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 8, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 9, 12, 0, 0, 17, 0],
[ 2, 0, 0, 0, 0, 13, 0, 0, 0, 0],
[ 0, 0, 5, 7, 0, 0, 0, 15, 0, 19],
[ 0, 0, 6, 0, 0, 0, 0, 0, 0, 20]])
In [280]: B = sparse.diags(np.arange(1,11),dtype=int)
In [281]: B
Out[281]:
<10x10 sparse matrix of type '<class 'numpy.int64'>'
with 10 stored elements (1 diagonals) in DIAgonal format>
In [282]: (A*B).A
Out[282]:
array([[ 0, 0, 12, 0, 0, 0, 0, 0, 0, 0],
[ 0, 6, 0, 0, 0, 0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 60, 0, 0, 144, 180],
[ 0, 0, 0, 0, 0, 66, 98, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 40, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 45, 72, 0, 0, 153, 0],
[ 2, 0, 0, 0, 0, 78, 0, 0, 0, 0],
[ 0, 0, 15, 28, 0, 0, 0, 120, 0, 190],
[ 0, 0, 18, 0, 0, 0, 0, 0, 0, 200]], dtype=int64)
Inplace iteration on columns:
In [283]: A1=A.copy()
In [284]: for i,j,v in zip(A1.indptr[:-1],A1.indptr[1:],np.arange(1,11)):
...: A1.data[i:j] *= v
...:
In [285]: A1.A
Out[285]:
array([[ 0, 0, 12, 0, 0, 0, 0, 0, 0, 0],
[ 0, 6, 0, 0, 0, 0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 60, 0, 0, 144, 180],
[ 0, 0, 0, 0, 0, 66, 98, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 40, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 45, 72, 0, 0, 153, 0],
[ 2, 0, 0, 0, 0, 78, 0, 0, 0, 0],
[ 0, 0, 15, 28, 0, 0, 0, 120, 0, 190],
[ 0, 0, 18, 0, 0, 0, 0, 0, 0, 200]])
Time comparisons:
In [287]: %%timeit A1=A.copy()
...: A1 *= B
...:
375 µs ± 1.29 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [288]: %%timeit A1 = A.copy()
...: for i,j,v in zip(A1.indptr[:-1],A1.indptr[1:],np.arange(1,11)):
...: A1.data[i:j] *= v
...:
79.9 µs ± 1.47 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Upvotes: 2