Reputation: 67
I want to check a list of urls (in a column of a dataframe df) for their status codes (404, 403 and 200 seem to be the interesting ones). I defined a function which does the job. However, it uses a for-loop which is inefficient (I have a long list of urls!).
Does anyone have a hint on how to do it more efficiently? Optimally the returned status code would also be displayed in a new column of the dataframe, e.g. df['status_code_url'].
def url_access(df, column):
e_404 =0
e_403 =0
e_200 =0
for i in range(0, len(df)):
if requests.head(df[column][i]).status_code == 404:
e_404= e_404+1
elif requests.head(df[column][i]).status_code == 403:
e_403 = e_403 +1
elif requests.head(df[column][i]).status_code == 200:
e_200 = e_200 +1
else:
print(requests.head(df[column][i]).status_code)
return ("Statistics about " + column , '{:.1%}'.format(e_404/len(df))
+ " of links to intagram post return 404", '{:.1%}'.format(e_403/len(df))
+ " of links to intagram post return 403", '{:.1%}'.format(e_200/len(df))
+ " of links to intagram post return 200")
Thank you a lot!
Upvotes: 2
Views: 2176
Reputation: 7186
pandas.DataFrame.apply
(or rather, the normal requests
library) will only be able to make one request at a time. To do multiple requests in parallel, you can use requests_futures
(install it with pip install requests-futures
):
import pandas as pd
from requests_futures.sessions import FuturesSession
def get_request(url):
session = FuturesSession()
return session.head(url)
def get_status_code(r):
return r.result().status_code
if __name__ == "__main__":
urls = ['http://python-requests.org',
'http://httpbin.org',
'http://python-guide.org',
'http://kennethreitz.com']
df = pd.DataFrame({"url": urls})
df["status_code"] = df["url"].apply(get_request).apply(get_status_code)
Afterwards you can use for example groupby
, as suggested by @Aritesh in their answer:
stats = df.groupby('status_code')['url'].count().reset_index()
print(stats)
# status_code url
0 200 1
1 301 3
With this you probably also want to add some protection against connection errors and a timeout:
import numpy as np
import requests
def get_request(url):
session = FuturesSession()
return session.head(url, timeout=1)
def get_status_code(r):
try:
return r.result().status_code
except (requests.exceptions.ConnectionError, requests.exceptions.ReadTimeout):
return 408 # Request Timeout
ips = np.random.randint(0, 256, (1000, 4))
df = pd.DataFrame({"url": ["http://" + ".".join(map(str, ip)) for ip in ips]})
df["status_code"] = df["url"].apply(get_request).apply(get_status_code)
df.groupby('status_code')['url'].count().reset_index()
# status_code url
# 0 200 3
# 1 302 2
# 2 400 2
# 3 401 1
# 4 403 1
# 5 404 1
# 6 408 990
Upvotes: 1
Reputation: 4571
Basically, your task seems to be:
For first step you use:
def get_code(url):
return requests.head(url).status_code
For second step you apply this fucntion to dataframe column, see https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.apply.html
resp_df = df[column].apply(get_code, axis=1)
For third step you can use opertions over column to calculate percentages:
resp_df[resp_df == 404].sum() / len (resp_df)
(note code not run)
Upvotes: 0
Reputation: 2103
Use Pandas
, apply
and groupby
-
def url_access(x):
return requests.head(x).status_code
df['Status'] = df['url'].apply(url_access)
dfcount = df.groupby('Status')['url'].count().reset_index()
Upvotes: 3