Reputation: 31
While coding along to get used to Rust, I stumbled upon a compiler error. I want to understand why I get the error and what to do about it:
cannot infer an appropriate lifetime for lifetime parameter in generic type due to conflicting requirements
I've been looking at a lot of questions covering similar errors, but most seem related to cyclic dependencies and I don't think this is what's going on here.
This is my attempt at a MWE, which still might be further reducible:
Playground link (slightly different error message)
pub struct InnerMut<T> {
state: u32,
stored_fn: fn(&mut T, u32),
}
impl<T> InnerMut<T> {
pub fn new(stored_fn: fn(&mut T, u32)) -> InnerMut<T> {
return InnerMut {
state: std::u32::MAX,
stored_fn,
};
}
pub fn mutate(&mut self, data: &mut T) {
(self.stored_fn)(data, self.state);
self.state -= 1;
}
}
pub struct StoreFnMut<F>
where
F: FnMut(&mut [u8]),
{
mutable_closure: F,
}
impl<F> StoreFnMut<F>
where
F: FnMut(&mut [u8]),
{
pub fn new(mutable_closure: F) -> StoreFnMut<F> {
StoreFnMut { mutable_closure }
}
fn run_closure_on_mutable_borrow(&mut self) {
let mut buf = vec![0; 100];
(self.mutable_closure)(&mut buf[..]);
}
}
fn foo(borrow: &mut &mut [u8], val: u32) {
borrow[0] = (val & 0xff) as u8;
}
fn main() {
let mut capturing_closure;
let mut store_fn_mut;
let mut inner_mut;
inner_mut = InnerMut::new(foo);
capturing_closure = move |mut borrow: &mut [u8]| {
inner_mut.mutate(&mut borrow);
};
store_fn_mut = StoreFnMut::new(capturing_closure);
store_fn_mut.run_closure_on_mutable_borrow();
}
I get this helpful looking yet confusing error message when compiling with Rust 1.24.1:
error[E0495]: cannot infer an appropriate lifetime for lifetime parameter in generic type due to conflicting requirements
--> src/main.rs:48:31
|
48 | inner_mut = InnerMut::new(foo);
| ^^^
|
note: first, the lifetime cannot outlive the anonymous lifetime #1 defined on the body at 49:25...
--> src/main.rs:49:25
|
49 | capturing_closure = move |mut borrow: &mut [u8]| {
| _________________________^
50 | | inner_mut.mutate(&mut borrow);
51 | | };
| |_____^
note: ...so that expression is assignable (expected &mut &mut [u8], found &mut &mut [u8])
--> src/main.rs:50:26
|
50 | inner_mut.mutate(&mut borrow);
| ^^^^^^^^^^^
note: but, the lifetime must be valid for the block suffix following statement 2 at 46:5...
--> src/main.rs:46:5
|
46 | / let mut inner_mut;
47 | |
48 | | inner_mut = InnerMut::new(foo);
49 | | capturing_closure = move |mut borrow: &mut [u8]| {
... |
53 | | store_fn_mut.run_closure_on_mutable_borrow();
54 | | }
| |_^
note: ...so that variable is valid at time of its declaration
--> src/main.rs:46:9
|
46 | let mut inner_mut;
| ^^^^^^^^^^^^^
Upvotes: 3
Views: 662
Reputation: 3889
What you are experiencing is that the compiler cannot prove that you are not storing a reference to &mut borrow
inside mutate()
into your InnerMut
instance. This would be problematic as for all it knows the parameter to your closure lives shorter than the closure itself. But InnerMut
was moved to the closure and must live longer than borrow
.
Basically Rust prevents closure arguments from escaping the closure because it does not know how to infer lifetimes then.
Consider this minimal example:
struct Test<T> {
field: fn(T),
}
impl<T> Test<T> {
fn foo(&self, _val: T) {}
}
fn calc(_: &mut i32) {}
fn main() {
let test: Test<&mut i32> = Test { field: calc };
let _ = move |y: i32| {
test.foo(&mut y);
};
}
It is written in a way so that the compiler understands it better so we can understand the error:
error[E0597]: `y` does not live long enough
--> src/main.rs:15:23
|
15 | test.foo(&mut y);
| ^ borrowed value does not live long enough
16 | };
| - `y` dropped here while still borrowed
17 | }
| - borrowed value needs to live until here
But I do not even have fields of that type in my struct
One key principle of Rust is that your function signature is the barrier for error reporting. The function itself is checked against the signature and the callers are checked against the signature. That prevents reporting confusing errors about function bodies to the caller of functions (who did not even write them).
For all that Rust knows, your T
is inferred as &mut u[8]
and your mutate()
captures a mutable self. That is suspicious. Better prevent that potential escape of closure variables.
But slightly changing the code makes it work
Rejecting all programs that are incorrect and accepting all programs that are correct is not decidable. Therefore Rust errs on the side of caution and rejects correct programs. Therefore some slight changes can make it possible for Rust to accept the program even if the program was correct before.
What does this mean for my code?
I really do not know the compiler well enough to answer this question. My guess is that by changing T
to [u8]
and the absence of explicit lifetimes from the InnerMut
type the compiler can prove that your closure variables are not escaping.
Upvotes: 1
Reputation: 30111
I can't possibly think of use case for &mut &mut _
.
If you change foo
to
fn foo(borrow: &mut [u8], val: u32);
Then you get another error:
error[E0277]: the trait bound `[u8]: std::marker::Sized` is not satisfied
--> src/main.rs:46:25
|
46 | let mut inner_mut = InnerMut::new(foo);
| ^^^^^^^^^^^^^ `[u8]` does not have a constant size known at compile-time
|
= help: the trait `std::marker::Sized` is not implemented for `[u8]`
note: required by `<InnerMut<T>>::new`
Well, nothing requires T
to be Sized
in this code as it's only used in references, so let's add the constraint T: ?Sized
:
pub struct InnerMut<T: ?Sized> {
state: u32,
stored_fn: fn(&mut T, u32),
}
impl<T: ?Sized> InnerMut<T> {
// …
}
Upvotes: 1