Reputation: 35
I am a beginner in the world of neural nets, I am building a neural net and want to predict the values in 'yy' by taking 'xx' as an input but I am getting a TypeError: 'numpy.float32' object is not iterable. I have tried changing somethings but it results in some other error. can anyone tell me why I am getting this error and how to correct it?
import tensorflow as tf
xx=(
[178.72,218.38,171.1],
[211.57,215.63,173.13],
[196.25,196.69,116.91],
[121.88,132.07,85.02],
[117.04,135.44,112.54],
[118.13,124.04,97.98],
[116.73,125.88,99.04],
[118.75,125.01,110.16],
[109.69,111.72,69.07],
[76.57,96.88,67.38],
[91.69,128.43,87.57],
[117.57,146.43,117.57]
)
yy=(
[212.09],
[195.58],
[127.6],
[116.5],
[117.95],
[117.55],
[117.55],
[110.39],
[74.33],
[91.08],
[121.75],
[127.3]
)
x=tf.placeholder(tf.float32,[None,3])
y=tf.placeholder(tf.float32,[None,1])
n1=5
n2=5
classes=12
def neuralnetwork(data):
hl1={'weights':tf.Variable(tf.random_normal([3,n1])),'biases':tf.Variable(tf.random_normal([n1]))}
hl2={'weights':tf.Variable(tf.random_normal([n1,n2])),'biases':tf.Variable(tf.random_normal([n2]))}
op={'weights':tf.Variable(tf.random_normal([n2,classes])),'biases':tf.Variable(tf.random_normal([classes]))}
l1=tf.add(tf.matmul(data,hl1['weights']),hl1['biases'])
l1=tf.nn.relu(l1)
l2=tf.add(tf.matmul(l1,hl2['weights']),hl2['biases'])
l2=tf.nn.relu(l2)
output=tf.matmul(l2,op['weights'])+op['biases']
return output
def train(x):
pred=neuralnetwork(x)
# cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
sq = tf.square(pred-y)
loss=tf.reduce_mean(sq)
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
#optimizer=tf.train.RMSPropOptimizer(0.01).minimize(cost)
epochs=10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
for i in range (int(1)):
batch_x=xx
batch_y=yy
# a=tf.shape(xx)
#print(sess.run(a))
i,c=sess.run(loss,feed_dict={x:batch_x, y: batch_y})
epoch_loss+=c
print("Epoch ",epoch," completed out of ",epochs, 'loss:', epoch_loss)
train(x)
Upvotes: 0
Views: 2055
Reputation: 972
The error is in i,c=sess.run(loss,feed_dict={x:batch_x, y: batch_y})
. You are returning one value but have two variables in output. Just remove i. Like this: c=sess.run(loss,feed_dict={x:batch_x, y: batch_y})
. Also, define epoch_loss above.
Upvotes: 1