Reputation: 11
I'm aiming to: get real-time quotes (bid/ask values) from Metatrader 5 and export to a variable in Python.
I've done some research so far - and got sucessfuly a request-reply ("Hello / World") with server (MT5) / client (Python 3.6) through ZeroMQ 4.2.3 and dingmaotu library. (https://github.com/dingmaotu/mql-zmq)
However - I didn't find any code samples for: Launch a MT5 server and simply get a quote in Python. (Example: IBM close, GOOG bid).
How can I do that?
I've already tried Darwinex template - but without sucess in MT5. (https://blog.darwinex.com/zeromq-interface-python-r-metatrader4/)
Upvotes: 1
Views: 7416
Reputation:
easiest way to do it is with drag and drop integration for metatrader5, you just install the ea and indicator and you get qoutes into your python script easilly...
Its a great solution for python and metatrader:
import socket
import numpy as np
import pandas as pd
from datetime import datetime
import pytz
import io
TZ_SERVER = 'Europe/Tallinn' # EET
TZ_LOCAL = 'Europe/Budapest'
TZ_UTC = 'UTC'
class Pytrader_API:
def __init__(self):
self.socket_error: int = 0
self.socket_error_message: str = ''
self.order_return_message: str = ''
self.order_error: int = 0
self.connected: bool = False
self.timeout: bool = False
self.command_OK: bool = False
self.command_return_error: str = ''
self.debug: bool = False
self.version: str = '1.06'
self.max_bars: int = 5000
self.max_ticks: int = 5000
self.timeout_value: int = 60
self.instrument_conversion_list: dict = {}
self.instrument_name_broker: str = ''
self.instrument_name_universal: str = ''
self.date_from: datetime = '2000/01/01, 00:00:00'
self.date_to: datetime = datetime.now()
self.instrument: str = ''
def Set_timeout(self,
timeout_in_seconds: int = 60
):
"""
Set time out value for socket communication with MT4 or MT5 EA/Bot.
Args:
timeout_in_seconds: the time out value
Returns:
None
"""
self.timeout_value = timeout_in_seconds
self.sock.settimeout(self.timeout_value)
self.sock.setblocking(1)
return
def Disconnect(self):
"""
Closes the socket connection to a MT4 or MT5 EA bot.
Args:
None
Returns:
bool: True or False
"""
self.sock.close()
return True
def Connect(self,
server: str = '',
port: int = 2345,
instrument_lookup: dict = []) -> bool:
"""
Connects to a MT4 or MT5 EA/Bot.
Args:
server: Server IP address, like -> '127.0.0.1', '192.168.5.1'
port: port number
instrument_lookup: dictionairy with general instrument names and broker intrument names
Returns:
bool: True or False
"""
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.sock.setblocking(1)
self.port = port
self.server = server
self.instrument_conversion_list = instrument_lookup
if (len(self.instrument_conversion_list) == 0):
print('Broker Instrument list not available or empty')
self.socket_error_message = 'Broker Instrument list not available'
return False
try:
self.sock.connect((self.server, self.port))
try:
data_received = self.sock.recv(1000000)
self.connected = True
self.socket_error = 0
self.socket_error_message = ''
return True
except socket.error as msg:
self.socket_error = 100
self.socket_error_message = 'Could not connect to server.'
self.connected = False
return False
except socket.error as msg:
print(
"Couldnt connect with the socket-server: %self.sock\n terminating program" %
msg)
self.connected = False
self.socket_error = 101
self.socket_error_message = 'Could not connect to server.'
return False
def Check_connection(self) -> bool:
"""
Checks if connection with MT terminal/Ea bot is still active.
Args:
None
Returns:
bool: True or False
"""
self.command = 'F000#0#'
self.command_return_error = ''
ok, dataString = self.send_command(self.command)
try:
if (ok == False):
self.command_OK = False
return False
x = dataString.split('#')
if x[1] == 'OK':
self.timeout = True
self.command_OK = True
return True
else:
self.timeout = False
self.command_OK = True
return False
except:
self.command_return_error = 'Unexpected socket communication error'
self.command_OK = False
return False
@property
def IsConnected(self) -> bool:
"""Returns connection status.
Returns:
bool: True or False
"""
return self.connected
def Get_static_account_info(self) -> dict:
"""
Retrieves static account information.
Returns: Dictionary with:
Account name,
Account number,
Account currency,
Account type,
Account leverage,
Account trading allowed,
Account maximum number of pending orders,
Account margin call percentage,
Account close open trades margin percentage
"""
self.command_return_error = ''
ok, dataString = self.send_command('F001#0#')
if (ok == False):
self.command_OK = False
return None
if self.debug:
print(dataString)
x = dataString.split('#')
if x[0] != 'F001':
self.command_return_error = str(x[2])
self.command_OK = False
return None
returnDict = {}
del x[0:2]
x.pop(-1)
returnDict['name'] = str(x[0])
returnDict['login'] = str(x[1])
returnDict['currency'] = str(x[2])
returnDict['type'] = str(x[3])
returnDict['leverage'] = int(x[4])
returnDict['trade_allowed'] = bool(x[5])
returnDict['limit_orders'] = int(x[6])
returnDict['margin_call'] = float(x[7])
returnDict['margin_close'] = float(x[8])
self.command_OK = True
return returnDict
def Get_dynamic_account_info(self) -> dict:
"""
Retrieves dynamic account information.
Returns: Dictionary with:
Account balance,
Account equity,
Account profit,
Account margin,
Account margin level,
Account margin free
"""
self.command_return_error = ''
ok, dataString = self.send_command('F002#0#')
if (ok == False):
self.command_OK = False
return None
if self.debug:
print(dataString)
x = dataString.split('#')
if x[0] != 'F002':
self.command_return_error = str(x[2])
self.command_OK = False
return None
returnDict = {}
del x[0:2]
x.pop(-1)
returnDict['balance'] = float(x[0])
returnDict['equity'] = float(x[1])
returnDict['profit'] = float(x[2])
returnDict['margin'] = float(x[3])
returnDict['margin_level'] = float(x[4])
returnDict['margin_free'] = float(x[5])
self.command_OK = True
return returnDict
def Get_PnL(self,
date_from: datetime = datetime(2021, 3, 1, tzinfo = pytz.timezone("Etc/UTC")),
date_to: datetime = datetime.now()) -> pd.DataFrame:
'''
Retrieves profit loss info.
Args:
date_from: start date
date_to: end date
Returns: Dictionary with:
realized_profit profit of all closed positions
unrealized_profit profit of all open positions
buy_profit profit of closed buy positions
sell_profit profit of closed sell positions
positions_in_profit number of profit positions
positions in loss number of loss positions
volume_in_profit total volume of positions in profit
volume_in_loss total volume of positions in loss
total_profit = 0.0
buy_profit = 0.0
sell_profit = 0.0
trades_in_loss = 0
trades_in_profit = 0
volume_in_loss = 0.0
volume_in_profit = 0.0
commission_in_loss = 0.0
commission_in_profit = 0.0
swap_in_loss = 0.0
swap_in_profit = 0.0
unrealized_profit = 0.0
this example taken from Python with Metatrader API
Upvotes: 0
Reputation: 21
The ZeroMQ <-> MetaTrader implementation referenced in the Darwinex blog post above was completely re-written from the ground up recently.
The latest versions of both the script and the accompanying MQL EA have been extended considerably, and support Python 3.
Specifically:
Furthermore, all exchange between Python and MetaTrader now happen in JSON format, allowing for easier consumption either end.
See here for code, examples and more information: https://github.com/darwinex/DarwinexLabs/tree/master/tools/dwx_zeromq_connector
Hope the revised code helps you solve the rates issue.
Upvotes: 2
Reputation: 4691
And what is the problem you are facing?
When sending data to 0MQ, you need to decide the format, probably json could be a good solution. The block sending the messages to 0MQ is
ZmqMsg reply("World");
// Send reply back to client
socket.send(reply);
Instead of sending "World", you need to send your message, let us say {"ticker":"GOOG","Bid":100,"Ask":101,"Time":1599000000}. In order to receive the values, you are welcome to use
SymbolInfoTick() structure, if you want to create a json automatically, you are welcome to use some library like jason.mqh available in Mql5.com/sources
Upvotes: 0