Reputation: 721
I need to style a Dataframe:
df = DataFrame({'A':['Bob','Rob','Dob'],'B':['Bob', 'Rob','Dob'],'C':['Bob','Dob','Dob'],'D':['Ben','Ten','Zen'],'E':['Ben','Ten','Zu']})
df
A B C D E
0 Bob Bob Bob Ben Ben
1 Rob Rob Dob Ten Ten
2 Dob Dob Dob Zen Zu
I need to compare columns - A,B, C at once to check if they are equal and then apply a highlight/color to unequal values. Then I need to compare columns D,E to check if they are equal and then apply a highlight/color to unequal values
like:
df[['A','B','C']].eq(df.iloc[:, 0], axis=0)
A B C
0 True True True
1 True True False
2 True True True
I am unable to apply df.style with a subset of df and then concat.
Response to answer by @jezrael:
Upvotes: 0
Views: 1193
Reputation: 862661
I believe need:
def highlight(x):
c1 = 'background-color: red'
c2 = ''
#define groups of columns for compare by first value of group ->
#first with A, second with D
cols = [['A','B','C'], ['D','E']]
#join all masks together
m = pd.concat([x[g].eq(x[g[0]], axis=0) for g in cols], axis=1)
df1 = pd.DataFrame(c2, index=x.index, columns=x.columns)
df1 = df1.where(m, c1)
return df1
df.style.apply(highlight, axis=None)
EDIT: For multiple colors is possible create dictionary by colors with columns for compare:
def highlight(x):
c = 'background-color: '
cols = {'red': ['A','B','C'], 'blue':['D','E']}
m = pd.concat([x[v].eq(x[v[0]], axis=0).applymap({False:c+k, True:''}.get)
for k, v in cols.items()], axis=1)
return m
EDIT1:
Alternative solution:
def highlight(x):
c = 'background-color: '
cols = {'red': ['A','B','C'], 'blue':['D','E']}
df1 = pd.DataFrame(c, index=x.index, columns=x.columns)
for k, v in cols.items():
m = x[v].eq(x[v[0]], axis=0).reindex(columns=x.columns, fill_value=True)
df1 = df1.where(m, c+k)
return df1
df.style.apply(highlight, axis=None)
Upvotes: 2