Reputation: 423
I have a dataset like:
value_last_1 value_last_2 value_last_3 value_last_4
53.40 91.29 106.56 34.71
131.92 81.53 70.57 31.82
0.00 0.00 21.27 12.55
It's easy to standardize the data set by columns using sklearn.preprocessing.StandardScaler
. However, if I want to standardize by rows how can I do that without transposing the dataset?
Upvotes: 1
Views: 3337
Reputation: 323226
Yes you can with pandas mean
and std
df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)
Out[841]:
value_last_1 value_last_2 value_last_3 value_last_4
0 -0.545272 0.596815 1.057086 -1.108629
1 1.283973 0.062308 -0.203409 -1.142872
2 -0.813624 -0.813624 1.233186 0.394061
Upvotes: 2