Reputation: 2993
I have the following pandas
dataframe (df
) [only an excerpt of the full dataframe]:
Name Cat_1 Cat_2
0 foo P Apples, Pears, Cats
1 bar R, M Apples
2 bla E Pears
3 blu F Cats, Pears
4 boo G Apples, Pears
5 faa P, E Apples, Cats
I would like to create bar plots that are build from Cat_1
and Cat_2
.
These columns contain multiple tags, which have to be use for plotting.
Currently, I am running this simple code to plot Cat_1
:
import pandas as pd
from matplotlib import pyplot as plt
fig, ax = plt.subplots(figsize = (4,4))
s = df["Cat_1"].str.split(", ", expand = True).stack()
s.value_counts().plot(kind = 'bar', ax = ax)
This returns a nice bar plot for each of the different labels in Cat_1
allowing multiple assignments (as intended).
One could apply the same to Cat_2
and obtain a separate plot with the respective labels.
However, I want to have a single plot that is first "stacked" by Cat_1
and subsequently the values are counted for Cat_2
.
I guess a way to think of this is to build a nested dictionary that would look like the following:
{"P": {"Apples": 2, "Pears": 1, "Cats": 2}, "R": {"Apples": 1}, ....}
but at the same time keep track of the total count of Cat_1
.
It does not matter whether its a grouped or stacked bar chart in the end.
Please take a look a the enclosed figure for a more visual idea:
Upvotes: 0
Views: 817
Reputation: 1016
This should get you pretty close if I understand correctly.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame(columns=['Name', 'Cat_1', 'Cat_2'])
df['Name'] = ['foo', 'bar', 'bla', 'blu', 'boo', 'faa']
df['Cat_1'] = ['P', 'R, M', 'E', 'F', 'G', 'P, E']
df['Cat_2'] = ['Apples, Pears, Cats', 'Apples', 'Pears', 'Cats, Pears', 'Apples, Pears', 'Apples, Cats']
# arrange data simply prepopulate with zero
df_pl = pd.DataFrame(columns=df["Cat_1"].str.split(", ", expand=True).stack().unique().tolist(),
index=df["Cat_2"].str.split(", ", expand=True).stack().unique().tolist(),
data=0)
# get chunk size for each combination
for x in df_pl.columns:
ind = df.Cat_1.str.contains(x)
for name in df_pl.index:
df_pl.set_value(name, x, df.loc[ind, 'Cat_2'].str.contains(name).sum())
N = len(df_pl.columns)
ind = np.arange(N) # the x locations for the groups
width = 0.35 # the width of the bars: can also be len(x) sequence
plotted = []
p = {}
for name in df_pl.index:
bottoms = df_pl.index.isin(plotted).sum()
p[name] = plt.bar(ind, df_pl.loc[name].values.tolist(), bottom=bottoms)
plotted.append(name)
plt.ylabel('y_label')
plt.title('some plot')
plt.xticks(ind, df_pl.columns.tolist())
plt.legend(p.values(), p.keys())
plt.show()
Upvotes: 1