Reputation: 307
I want summarize the integer_transaction
by EMP_NAME
.
EMP_NAME
in a column instead of the indexI want output
Emp_name Count Sum
a 2 1
b 1 0
import pandas as pd
import numpy as np
df = pd.DataFrame(data = {'EMP_NAME': ["a", "a", "b"], 'integer_transaction': [0, 1, 0]})
x=df.groupby(['EMP_NAME'])['integer_transaction'].agg({'Frequency_count': count, 'Frequency_Sum': np.sum})
x=df.groupby(['EMP_NAME'])['integer_transaction'].agg({'Frequency_count': np.size, 'Frequency_Sum': np.sum})
FutureWarning: using a dict on a Series for aggregation
is deprecated and will be removed in a future version
# -*- coding: utf-8 -*-
Upvotes: 4
Views: 4923
Reputation: 11514
Try
df.groupby(['EMP_NAME'])['integer_transaction'].agg(["count", "sum"])
count sum
EMP_NAME
a 2 1
b 1 0
If you really want, you can rename the columns using an additional .rename("count": "Frequency_count", "sum": "Frequency_sum")
.
Just for reference, the following also works perfectly fine:
x=df.groupby(['EMP_NAME'])['integer_transaction'].agg({'Frequency_count': "count", 'Frequency_Sum': np.sum})
x
__main__:1: FutureWarning: using a dict on a Series for aggregation
is deprecated and will be removed in a future version
Out[26]:
Frequency_count Frequency_Sum
EMP_NAME
a 2 1
b 1 0
Note how count
is quoted.
x=df.groupby(['EMP_NAME'])['integer_transaction'].agg({'Frequency_count': np.size, 'Frequency_Sum': np.sum})
x
__main__:1: FutureWarning: using a dict on a Series for aggregation
is deprecated and will be removed in a future version
Out[27]:
Frequency_count Frequency_Sum
EMP_NAME
a 2 1
b 1 0
The warnings you get just tell you that this functionality will be removed in the future, so they should probably not be used. However, they do produce the correct answer.
To move the index to the column, try
df.groupby(['EMP_NAME'])['integer_transaction'].agg(["count", "sum"]).reset_index()
EMP_NAME count sum
0 a 2 1
1 b 1 0
Upvotes: 6