Reputation: 1667
I am working on a prediction model for stock returns over a fixed period of time (say n days). I am was hoping to gather a few ideas ahead of time. My questions are:
1) Would it be best to turn this into a classification problem, say create a dummy variable with returns larger than x%? Then I could try the entire arsenal of ML Algorithms.
2) If I don't turn it into a classification problem but use say a regression model, would it make sense or be necessary to transform the returns into logs?
Any thoughts are appreciated.
EDIT: My goal with this is relatively broadly defined, in the sense that I would simple like to improve performance of the selection process (pick positive returns and avoid negative ones)
Upvotes: 0
Views: 105
Reputation: 3473
Upvotes: 1