Reputation: 323
My DataFrame looks like this:
a b c d e f g
0 x y 1 3 4 5 6
1 x y -1 7 8 5 6
2 x y -1 7 8 3 4
For rows where df.c == -1
I would like to sort all the columns between df.d
and df.g
in ascending order.
The result would be:
a b c d e f g
0 x y 1 3 4 5 6
1 x y -1 5 6 7 8
2 x y -1 3 4 7 8
I tried several things but none seemed to work:
for row in df.itertuples():
if row.c == -1:
subset = row[4:]
sorted = sorted(subset)
df.replace(to_replace=subset, value= sorted)
and also
df.loc[df.c == -1, df[4:]] = sorted(df[4:])
Upvotes: 1
Views: 1518
Reputation: 29710
You can use numpy.sort
on the region of interest.
mask = df.c.eq(-1), slice('d', 'g')
df.loc[mask] = np.sort(df.loc[mask].values)
df
# a b c d e f g
# 0 x y 1 3 4 5 6
# 1 x y -1 5 6 7 8
# 2 x y -1 3 4 7 8
Upvotes: 3
Reputation: 11105
Probably not the fastest, but this works:
rmask = df.c == -1
cmask = ['d', 'e', 'f', 'g']
df.loc[rmask, cmask] = df.loc[rmask, cmask].apply(lambda row: sorted(row), axis=1)
df
a b c d e f g
0 x y 1 3 4 5 6
1 x y -1 5 6 7 8
2 x y -1 3 4 7 8
Upvotes: 1