Reputation: 475
We know mutate_at
function from dplyr
allows us to mutate selected multiple columns and apply a function to each of them. I need opposite of it. I mean to say, apply multiple functions to same column or apply same function multiple times to the same column. Take the following reproducible example
.
> main <- structure(list(PolygonId = c(0L, 1L, 1612L, 3L, 2L, 1698L), Area = c(3.018892,
1.995702, 0.582808, 1.176975, 2.277057, 0.014854), Perimeter = c(10.6415,
8.6314, 4.8478, 6.1484, 9.2226, 0.6503), h0 = c(1000,500,700,1000,200,1200)), .Names = c("PolygonId",
"Area", "Perimeter", "h0"), row.names = c(NA, 6L), class = "data.frame")
> main
PolygonId Area Perimeter h0
1 0 3.018892 10.6415 1000
2 1 1.995702 8.6314 500
3 1612 0.582808 4.8478 700
4 3 1.176975 6.1484 1000
5 2 2.277057 9.2226 200
6 1698 0.014854 0.6503 1200
I am only concerned about h0
column in the df main
.
Expected outcome:
The h10
field is h0 + 10% of h0
and h_10
is h0 - 10% of h0
PolygonId Area Perimeter h0 h10 h20 h_10 h_20
1 0 3.018892 10.6415 1000 1100 1200 900 800
2 1 1.995702 8.6314 500 550 600 450 400
3 1612 0.582808 4.8478 700 770 840 630 560
4 3 1.176975 6.1484 1000 1100 1200 900 800
5 2 2.277057 9.2226 200 220 240 180 160
6 1698 0.014854 0.6503 1200 1320 1440 1080 960
I'd usually do this::
calcH <- function(h, pc){
h + pc / 100 * h
}
new_main <- mutate ( main,
h10 = calcH(h0, 10),
h20 = calcH(h0, 20),
h_10 = calcH(h0, -10),
h_20 = calcH(h0, -20)
)
But this is going to be hectic and long code since I have to do this calculation for 1%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%... 30%
in both positive and negative ways.
Upvotes: 2
Views: 395
Reputation: 18681
Here's another approach similar to @andyyy's, but uses rlang
instead:
library(dplyr)
library(rlang)
percent <- c(1, 2.5*1:12)
calc_expr <- function(percent_vec){
parse_exprs(paste(paste0("h0+(",percent_vec,"/100*h0)"), collapse = ";"))
}
main %>%
mutate(!!!calc_expr (percent), !!!calc_expr (percent*-1)) %>%
setNames(c(colnames(main), paste0("h", percent), paste0("h_", percent)))
Result:
PolygonId Area Perimeter h0 h1 h2.5 h5 h7.5 h10 h12.5 h15 h17.5 h20 h22.5 h25 h27.5
1 0 3.018892 10.6415 1000 1010 1025.0 1050 1075.0 1100 1125.0 1150 1175.0 1200 1225.0 1250 1275.0
2 1 1.995702 8.6314 500 505 512.5 525 537.5 550 562.5 575 587.5 600 612.5 625 637.5
3 1612 0.582808 4.8478 700 707 717.5 735 752.5 770 787.5 805 822.5 840 857.5 875 892.5
4 3 1.176975 6.1484 1000 1010 1025.0 1050 1075.0 1100 1125.0 1150 1175.0 1200 1225.0 1250 1275.0
5 2 2.277057 9.2226 200 202 205.0 210 215.0 220 225.0 230 235.0 240 245.0 250 255.0
6 1698 0.014854 0.6503 1200 1212 1230.0 1260 1290.0 1320 1350.0 1380 1410.0 1440 1470.0 1500 1530.0
h30 h_1 h_2.5 h_5 h_7.5 h_10 h_12.5 h_15 h_17.5 h_20 h_22.5 h_25 h_27.5 h_30
1 1300 990 975.0 950 925.0 900 875.0 850 825.0 800 775.0 750 725.0 700
2 650 495 487.5 475 462.5 450 437.5 425 412.5 400 387.5 375 362.5 350
3 910 693 682.5 665 647.5 630 612.5 595 577.5 560 542.5 525 507.5 490
4 1300 990 975.0 950 925.0 900 875.0 850 825.0 800 775.0 750 725.0 700
5 260 198 195.0 190 185.0 180 175.0 170 165.0 160 155.0 150 145.0 140
6 1560 1188 1170.0 1140 1110.0 1080 1050.0 1020 990.0 960 930.0 900 870.0 840
Notes:
Using the vector of percentages, I construct multiple expressions using paste0
and parse_exprs
then unquote and splice them in mutate
using !!!
. Finally, rename the columns using setNames
.
Upvotes: 0
Reputation: 1015
mutate_at can use multiple functions, but they need to exist in the environment as named functions (can't be anonymous functions) So something like
pcts<-rep(c(1,2.5*1:12),2)*c(-1,1)
for(i in pcts){
assign(gsub("-","_",paste0("h",i)),eval(parse(text=sprintf("function(x) x*(100+%f)/100",i)))) }
main %>% mutate_at(vars(h0),gsub("-","_",paste0("h",pcts)))
would work
Upvotes: 1
Reputation: 51592
This is easy in base R. The idea is to create a vector with the required percentages, loop over that vector and calculate your metric, i.e.
v1 <- c(1, seq(2.5, 30, by = 2.5), seq(-30, -2.5, by = 2.5), -1)
sapply(v1, function(i) calcH(main$h0, i))
Upvotes: 1
Reputation: 2101
I like to solve these kind of problems using long data representation:
library(dplyr)
library(tidyr)
# create data frame with join helper and multiplier-values:
bla <- data.frame(mult = seq(-.1, .1, .01),
join = TRUE)
# join, calculate values, create names, transform to wide:
main %>%
mutate(join = TRUE) %>%
left_join(bla) %>%
mutate(h0 = h0*(1+mult),
mult = sub(x = paste0("h", mult*100), pattern = "-", replacement = "_")) %>%
select(-join) %>%
spread(mult, h0)
Upvotes: 1