Reputation: 1109
I am reading streaming data from a kafka topic and I want to store some parts of it in a pandas dataframe.
from confluent_kafka import Consumer, KafkaError
c = Consumer({
'bootstrap.servers': "###",
'group.id': '###',
'default.topic.config': {
'auto.offset.reset': 'latest' }
})
c.subscribe(['scorestore'])
while True:
msg = c.poll(1.0)
if msg is None:
continue
if msg.error():
if msg.error().code() == KafkaError._PARTITION_EOF:
continue
else:
print(msg.error())
break
print('Received message: {}'.format(msg.value().decode('utf-8')))
c.close()
The received message is a json
{
"messageHeader" : {
"messageId" : "4b604b33-7256-47b6-89d6-eb1d92a282e6",
"timestamp" : 152520000,
"sourceHost" : "test",
"sourceLocation" : "test",
"tags" : [ ],
"version" : "1.0"
},
"id_value" : {
"id" : "1234",
"value" : "333.0"
}
}
I am trying to create a dataframe that will have the timestamp, id and value columns, for example
timestamp id value
0 152520000 1234 333.0
Is there a way to accomplish this without parsing the json message and appending the values I need row by row to the dataframe?
Upvotes: 5
Views: 8282
Reputation: 571
The solution that I proppose may be a little tricky. Imagine you have your JSON message in a string named 'msg_str':
import pandas as pd
msg_str = '{ "messageHeader" : { "messageId" : "4b604b33-7256-47b6-89d6-eb1d92a282e6", "timestamp" : 152520000, "sourceHost" : "test", "sourceLocation" : "test", "tags" : [ ], "version" : "1.0" }, "id_value" : { "id" : "1234", "value" : "333.0" }}'
#first create a dataframe with read_json
p = pd.read_json(msg_str)
# Now you have a dataframe with two columns. Where a column has a value, the other
# has a NaN. Now create a new column only with the values which are not 'NaN'
p['fussion'] = p['id_value'].fillna(p['messageHeader'])
# Delete columns 'id_value' and 'messageHeader' as you don't need them anymore
p = p[['fussion']].reset_index()
# Create a temporal column only to be the index to do a pivot
p['tmp'] = 0
# Do the pivot to convert rows into columns
p = p.pivot(index = 'tmp' ,values='fussion', columns='index')
# Finally get the columns that you are interested in
p = p.reset_index()[['timestamp','id','value']]
print(p)
Result:
index timestamp id value
0 152520000 1234 333
Then you can append this dataframe to a dataframe where you are accumulating your results.
Maybe there is a simplest solution, but I hope it helps you if it wasn't the case.
Upvotes: 2