Reputation: 199
I have a numpy array
src = np.random.rand(320,240)
and another numpy array idx
of size (2 x (320*240)). Each column of idx
indexes an entry in a result array dst
, e.g., idx[:,20] = [3,10]
references row 3, column 10 in dst
and the assumption is that 20
corresponds to the flattened index of src
, i.e., idx
establishes a mapping between the entries of src
and dst
. Assuming dst
is initialized with all zeros, how can I copy the entries in src
to their destination in dst
without a loop?
Upvotes: 4
Views: 1218
Reputation: 53029
Here is the canonical way of doing it:
>>> import numpy as np
>>>
>>> src = np.random.rand(4, 3)
>>> src
array([[0.0309325 , 0.72261479, 0.98373595],
[0.06357406, 0.44763809, 0.45116039],
[0.63992938, 0.6445605 , 0.01267776],
[0.76084312, 0.61888759, 0.2138713 ]])
>>>
>>> idx = np.indices(src.shape).reshape(2, -1)
>>> np.random.shuffle(idx.T)
>>> idx
array([[3, 3, 0, 1, 0, 3, 1, 1, 2, 2, 2, 0],
[1, 2, 2, 0, 1, 0, 1, 2, 2, 1, 0, 0]])
>>>
>>> dst = np.empty_like(src)
>>> dst[tuple(idx)] = src.ravel()
>>> dst
array([[0.2138713 , 0.44763809, 0.98373595],
[0.06357406, 0.63992938, 0.6445605 ],
[0.61888759, 0.76084312, 0.01267776],
[0.45116039, 0.0309325 , 0.72261479]])
If you can't be sure that idx
is a proper shuffle it's a bit safer to use np.full
with a fill value that does not appear in src
instead of np.empty
.
>>> dst = np.full_like(src, np.nan)
>>> dst[tuple(idx)] = src.ravel()
>>>
>>> dst
array([[0.27020869, 0.71216066, nan],
[0.63812283, 0.69151451, 0.65843901],
[ nan, 0.02406174, 0.47543061],
[0.05650845, nan, nan]])
If you spot the fill value in dst
, something is wrong with idx
.
Upvotes: 3
Reputation: 13218
You can try:
dst[idx[0, :], idx[1, :]] = src.flat
In [33]: src = np.random.randn(2, 3)
In [34]: src
Out[34]:
array([[ 0.68636938, 0.60275041, 1.26078727],
[ 1.17937849, -1.0369404 , 0.42847611]])
In [35]: dst = np.zeros_like(src)
In [37]: idx = np.array([[0, 1, 0, 1, 0, 0], [1, 2, 0, 1, 2, 0]])
In [38]: dst[idx[0, :], idx[1, :]] = src.flat
In [39]: dst
Out[39]:
array([[ 0.42847611, 0.68636938, -1.0369404 ],
[ 0. , 1.17937849, 0.60275041]])
dst[0, 1] is src[0, 0], etc.
Upvotes: 1