Reputation: 502
I have two dataframes looking like
df1:
ID A B C D
0 'ID1' 0.5 2.1 3.5 6.6
1 'ID2' 1.2 5.5 4.3 2.2
2 'ID1' 0.7 1.2 5.6 6.0
3 'ID3' 1.1 7.2 10. 3.2
df2:
ID A B C D
0 'ID1' 1.0 2.0 3.3 4.4
1 'ID2' 1.5 5.0 4.0 2.2
2 'ID3' 0.6 1.2 5.9 6.2
3 'ID4' 1.1 7.2 8.5 3.0
df1 can have multiple entries with the same ID
whereas each ID
occurs only once in df2. Also not all ID
in df2 are necessarily present in df1. I can't solve this by using set_index()
as multiple rows in df1 can have the same ID
, and that the ID
in df1 and df2 are not aligned.
I want to create a new dataframe where I subtract the values in df2[['A','B','C','D']]
from df1[['A','B','C','D']]
based on matching the ID.
The resulting dataframe would look like:
df_new:
ID A B C D
0 'ID1' -0.5 0.1 0.2 2.2
1 'ID2' -0.3 0.5 0.3 0.0
2 'ID1' -0.3 -0.8 2.3 1.6
3 'ID3' 0.5 6.0 1.5 0.2
I know how to do this with a loop, but since I'm dealing with huge data quantities this is not practical at all. What is the best way of approaching this with Pandas?
Upvotes: 13
Views: 5030
Reputation: 323316
You just need set_index and subtract
(df1.set_index('ID')-df2.set_index('ID')).dropna(axis=0)
Out[174]:
A B C D
ID
'ID1' -0.5 0.1 0.2 2.2
'ID1' -0.3 -0.8 2.3 1.6
'ID2' -0.3 0.5 0.3 0.0
'ID3' 0.5 6.0 4.1 -3.0
If the order matters add reindex
for df2
(df1.set_index('ID')-df2.set_index('ID').reindex(df1.ID)).dropna(axis=0).reset_index()
Out[211]:
ID A B C D
0 'ID1' -0.5 0.1 0.2 2.2
1 'ID2' -0.3 0.5 0.3 0.0
2 'ID1' -0.3 -0.8 2.3 1.6
3 'ID3' 0.5 6.0 4.1 -3.0
Upvotes: 15
Reputation: 164733
One method is to use numpy
. We can extract the ordered indices required from df2
using numpy.searchsorted
.
Then feed this into the construction of a new dataframe.
idx = np.searchsorted(df2['ID'], df1['ID'])
res = pd.DataFrame(df1.iloc[:, 1:].values - df2.iloc[:, 1:].values[idx],
index=df1['ID']).reset_index()
print(res)
ID 0 1 2 3
0 'ID1' -0.5 0.1 0.2 2.2
1 'ID2' -0.3 0.5 0.3 0.0
2 'ID1' -0.3 -0.8 2.3 1.6
3 'ID3' 0.5 6.0 4.1 -3.0
Upvotes: 2
Reputation: 76326
Similarly to what Wen (who beat me to it) proposed, you can use pd.DataFrame.subtract
:
df1.set_index('ID').subtract(df2.set_index('ID')).reset_index()
A B C D
ID
'ID1' -0.5 0.1 0.2 2.2
'ID1' -0.3 -0.8 2.3 1.6
'ID2' -0.3 0.5 0.3 0.0
'ID3' 0.5 6.0 4.1 -3.0
Upvotes: 8