Reputation: 1820
I am learning pytorch and running a toy regression problem. I am baffled by the fact that it appears that each time I run a tensor through a model, the prediction changes. Clearly this is cant be the case but what am I missing?
Pytorch version: 0.4.0
I am running here without GPU to eliminate that potential issue.
Code:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.utils.data as utils_data
from torch.autograd import Variable
from torch import optim, nn
from torch.utils.data import Dataset
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_, xavier_normal_,uniform_
from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
cuda=False #set to true uses GPU
#load boston data from scikit
boston = load_boston()
x=boston.data
y=boston.target
y=y.reshape(y.shape[0],1)
#change to tensors
x = torch.from_numpy(x)
y = torch.from_numpy(y)
#create dataset and use data loader
training_samples = utils_data.TensorDataset(x, y)
data_loader = utils_data.DataLoader(training_samples, batch_size=64)
#simple model
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
#all the layers
self.fc1 = nn.Linear(x.shape[1], 20)
xavier_uniform_(self.fc1.weight.data) #this is how you can change the weight init
self.drop = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(20, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x= self.drop(x)
x = self.fc2(x)
return x
net=Net()
if cuda:
net.cuda()
# create a stochastic gradient descent optimizer
optimizer = optim.Adam(net.parameters())
# create a loss function (mse)
loss = nn.MSELoss(size_average=True)
# run the main training loop
epochs =50
hold_loss=[]
for epoch in range(epochs):
cum_loss=0.
for batch_idx, (data, target) in enumerate(data_loader):
tr_x, tr_y = data.float(), target.float()
if cuda:
tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
# Reset gradient
optimizer.zero_grad()
# Forward pass
fx = net(tr_x)
output = loss(fx, tr_y) #loss for this batch
cum_loss += output.item() #accumulate the loss
# Backward
output.backward()
# Update parameters based on backprop
optimizer.step()
hold_loss.append(cum_loss/len(training_samples))
#training loss
plt.plot(np.array(hold_loss))
This part, if re-ran will return different predictions each time, the actuals dont change so the order of the data is not changing!
#score the training set
for batch_idx, (data, target) in enumerate(data_loader):
tr_x, tr_y = data.float(), target.float()
if batch_idx ==0:
hold_pred=net(tr_x).data.numpy()
hold_actual=tr_y.data.numpy().reshape(tr_y.data.numpy().shape[0],1)
else:
hold_pred =np.row_stack([hold_pred,net(tr_x).data.numpy()])
hold_actual=np.row_stack([hold_actual,tr_y.data.numpy().reshape(tr_y.data.numpy().shape[0],1)])
#view the first few predictions
print(hold_pred[0:10])
print(hold_actual[0:10])
Upvotes: 3
Views: 2449
Reputation: 15119
Your network has a Dropout
layer, which has for purpose to randomly sample (with a probability p=0.5
here) the data it receives during training (net.train()
set before inference). See the doc for more information (usage, purpose).
This layer can be short-circuited during testing (net.eval()
set before inference).
Upvotes: 8