Reputation: 1361
I'm trying to get z3 to work (most of the time) for very simple non-linear integer arithmetic problems. Unfortunately, I've hit a bit of a wall with exponentiation. I want to be able handle problems like x^{a+b+2} = (x * x * x^{a} * x{b}). I only need to handle non-negative exponents.
I tried redefining exponentiation as a recursive function (so that it's just allowed to return 1 for any non-positive exponent) and using a pattern to facilitate z3 inferring that x^{a+b} = x^{a} * x^{b}, but it doesn't seem to work - I'm still timing out.
(define-fun-rec pow ((x!1 Int) (x!2 Int)) Int
(if (<= x!2 0) 1 (* x!1 (pow x!1 (- x!2 1)))))
; split +
(assert (forall ((a Int) (b Int) (c Int))
(! (=>
(and (>= b 0) (>= c 0))
(= (pow a (+ b c)) (* (pow a c) (pow a b))))
:pattern ((pow a (+ b c))))))
; small cases
(assert (forall ((a Int)) (= 1 (pow a 0))))
(assert (forall ((a Int)) (= a (pow a 1))))
(assert (forall ((a Int)) (= (* a a) (pow a 2))))
(assert (forall ((a Int)) (= (* a a a) (pow a 3))))
; Our problem
(declare-const x Int)
(declare-const i Int)
(assert (>= i 0))
; This should be provably unsat, by splitting and the small case for 2
(assert (not (= (* (* x x) (pow x i)) (pow x (+ i 2)))))
(check-sat) ;times out
Am I using patterns incorrectly, is there a way to give stronger hints to the proof search, or an easier way to do achieve what I want?
Upvotes: 2
Views: 86
Reputation: 12852
Pattern (also called triggers) may only contain uninterpreted functions. Since +
is an interpreted function, you essentially provide an invalid pattern, in which case virtually anything can happen.
As a first step, I disabled Z3's auto-configuration feature and also MBQI-based quantifier instantiation:
(set-option :auto_config false)
(set-option :smt.mbqi false)
Next, I introduced an uninterpreted plus
function and replaced each application of +
by plus
. That sufficed to make your assertion verify (i.e. yield unsat
). You can of course also axiomatise plus
in terms of +
, i.e.
(declare-fun plus (Int Int) Int)
(assert (forall ((a Int) (b Int))
(! (= (plus a b) (+ a b))
:pattern ((plus a b)))))
but your assertion already verifies without the definitional axioms for plus
.
Upvotes: 3