Reputation: 175
for my r project, I need to repeat several big (i.e. bigger than 1000x1000) matrices. I found two versions the matlab repmat-function in r, that both work, but have severe limitations, so that I am unable to use them. Does anyone have another approach to solve this problem?
To decrease memory usage, I use the sparse-functions from the Matrix-Package (Diagonal()
, Matrix(..., sparse=TRUE)
).
> m <- Diagonal(10000)
> object.size(m)
1168 bytes
Now, to repeat this matrix I use a r translation of the matlab function repmat
(which can be found here):
repmat <- function(X, m, n){
mx <- dim(X)[1]
nx <- dim(X)[2]
return(matrix(t(matrix(X,mx,nx*n)),mx*m,nx*n,byrow=T))
}
Unfortunately, this method uses the standard/dense version of a matrix and only works up to a certain object size, which is exceeded pretty fast within my project. Simply swapping the matrix(...)
function with a Matrix(..., sparse=TRUE)
one also wont work, because of the different parameter definitions for the matrix dimensions.
The only other solution would be the repmat-version from the pcaMethods-Package, where I am able to use the sparse matrices:
repmat <- function(mat, M, N) {
## Check if all input parameters are correct
if( !all(M > 0, N > 0) ) {
stop("M and N must be > 0")
}
## Convert array to matrix
ma <- mat
if(!is.matrix(mat)) {
ma <- Matrix(mat, nrow=1, sparse=TRUE)
}
rows <- nrow(ma)
cols <- ncol(ma)
replicate <- Matrix(0, rows * M, cols * N, sparse=TRUE)
for (i in 1:M) {
for(j in 1:N) {
start_row <- (i - 1) * rows + 1
end_row <- i * rows
start_col <- (j - 1) * cols + 1
end_col <- j * cols
replicate[start_row:end_row, start_col:end_col] <- ma
}
}
return(replicate)
}
However, this functions does the job, but needs a lot of runtime (probably because of the nested loops). My only option left is to increase the overall memory.limit
, but this only results in running out of physical memory.
I am at my wits end here. Any help or advice would be appreciated. Thank you in advance for your replies.
Upvotes: 2
Views: 604
Reputation: 132999
Use the Matrix methods for rbind
and cbind
:
repMat <- function(X, m, n){
Y <- do.call(rbind, rep(list(X), m))
do.call(cbind, rep(list(Y), n))
}
system.time(res <- repMat(m, 20, 30))
#user system elapsed
#0.48 0.44 0.92
str(res)
#Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
# ..@ i : int [1:6000000] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 ...
# ..@ p : int [1:300001] 0 20 40 60 80 100 120 140 160 180 ...
# ..@ Dim : int [1:2] 200000 300000
# ..@ Dimnames:List of 2
# .. ..$ : NULL
# .. ..$ : NULL
# ..@ x : num [1:6000000] 1 1 1 1 1 1 1 1 1 1 ...
# ..@ factors : list()
object.size(res)
#73201504 bytes
Upvotes: 3