user208513
user208513

Reputation: 31

R and probability

I'm trying to write a code to get the probability of a certain scenario. There are 52 cards broken down into 4 Suit piles. 1 card is randomly drawn from each pile to make a 4 card combination and then the cards are put back into their piles. How do you work out the probability of the combination having only 1 King? I have tried the following but I think I am doing something wrong

cards <- c(2:10,'J','Q', 'K','A') 
v <- sample(rep(cards,1:13),1000,replace=T)
cat('The probability of getting a King is approximately:',sum(v=='K')/length(v),'\n')

Upvotes: 3

Views: 425

Answers (2)

Edward
Edward

Reputation: 18683

Don't use sample for calculating exact probabilities.

The probability of the 4-card combination having only 1 King can be easily calculated using the Binomial formula since the experiment satisfies all the criteria for a Binomial experiment.

P(x) = choose(n, x) * p^x * (1 - p)^(n-x)

where, n = number of trials, x = number of times a specific outcome occurs out of n trials, p = probability of a success.

In R:

n <- 4
x <- 1
p <- 1/13

choose(n, x) * p^x * (1 - p)^(n-x)
# [1] 0.2420083

https://en.wikipedia.org/wiki/Binomial_distribution

Upvotes: 1

Roasty247
Roasty247

Reputation: 729

As I understand your question, you can work it out using this code. This works for a single given draw of 1 card from each pile, or subsequent given draws after replacement. Doesn't work if you're interested in probability over multiple draws, or subsequent draws without replacement. It's not a repeated sampling based way to calculate.

All possible draw combos i.e. King or not king from each pile:

Hearts <- rep(c((rep("k",1)),(rep("n",1))),8)
Spades <- rep(c((rep("k",2)),(rep("n",2))),4)
Clubs <- rep(c((rep("k",4)),(rep("n",4))),2)
Diamonds <- rep(c((rep("k",8)),(rep("n",8))),1)

pile.possibilities <- data.frame(Hearts,Spades,Clubs,Diamonds)

And draw probabilities per pile:

pile.possibilities$H.prob <- ifelse (pile.possibilities$Hearts == "k", (1/13), (12/13))
pile.possibilities$S.prob <- ifelse (pile.possibilities$Spades == "k", (1/13), (12/13))
pile.possibilities$C.prob <- ifelse (pile.possibilities$Clubs == "k", (1/13), (12/13))
pile.possibilities$D.prob <- ifelse (pile.possibilities$Diamonds == "k", (1/13), (12/13))

Combined probability per combo:

pile.possibilities$Combo.prob <- pile.possibilities$H.prob *  
                                 pile.possibilities$S.prob *   
                                 pile.possibilities$C.prob *   
                                 pile.possibilities$D.prob

A certainty that you will have one of these combos.

> sum(Pile.combo.prob)
[1] 1

Filter your combinations of interest:

pile.possibilities$one.king.combo <- paste(pile.possibilities$Hearts,pile.possibilities$Spades,pile.possibilities$Clubs,pile.possibilities$Diamonds,sep = "")
pile.possibilities$one.king.combo <- sapply(strsplit(pile.possibilities$one.king, NULL), function(x) paste(sort(x), collapse = ''))

one.king.probability<- sum(subset(pile.possibilities, one.king.combo == "knnn")$Combo.prob)
one.king.probability
[1] 0.2420083

#Final data frame used
> pile.possibilities
   Hearts Spades Clubs Diamonds     H.prob     S.prob     C.prob     D.prob Combo.prob one.king.combo
1       k      k     k        k 0.07692308 0.07692308 0.07692308 0.07692308 3.501278e-05           kkkk
2       n      k     k        k 0.92307692 0.07692308 0.07692308 0.07692308 4.201534e-04           kkkn
3       k      n     k        k 0.07692308 0.92307692 0.07692308 0.07692308 4.201534e-04           kkkn
4       n      n     k        k 0.92307692 0.92307692 0.07692308 0.07692308 5.041840e-03           kknn
5       k      k     n        k 0.07692308 0.07692308 0.92307692 0.07692308 4.201534e-04           kkkn
6       n      k     n        k 0.92307692 0.07692308 0.92307692 0.07692308 5.041840e-03           kknn
7       k      n     n        k 0.07692308 0.92307692 0.92307692 0.07692308 5.041840e-03           kknn
8       n      n     n        k 0.92307692 0.92307692 0.92307692 0.07692308 6.050208e-02           knnn
9       k      k     k        n 0.07692308 0.07692308 0.07692308 0.92307692 4.201534e-04           kkkn
10      n      k     k        n 0.92307692 0.07692308 0.07692308 0.92307692 5.041840e-03           kknn
11      k      n     k        n 0.07692308 0.92307692 0.07692308 0.92307692 5.041840e-03           kknn
12      n      n     k        n 0.92307692 0.92307692 0.07692308 0.92307692 6.050208e-02           knnn
13      k      k     n        n 0.07692308 0.07692308 0.92307692 0.92307692 5.041840e-03           kknn
14      n      k     n        n 0.92307692 0.07692308 0.92307692 0.92307692 6.050208e-02           knnn
15      k      n     n        n 0.07692308 0.92307692 0.92307692 0.92307692 6.050208e-02           knnn
16      n      n     n        n 0.92307692 0.92307692 0.92307692 0.92307692 7.260250e-01           nnnn

Upvotes: 2

Related Questions