Reputation: 466
consider that I have some set of documents(in below-mentioned structure) in an elastic search index
{
"xid": "1234567",
"time": "12/5/12 5:49 AM",
"data": [
{
"id": "abc",
"amount": 400
},
{
"id": "def",
"amount": 200
}
]
}
{
"xid": "1234568",
"time": "13/5/12 7:23 AM",
"data": [
{
"id": "abc",
"amount": 400
},
{
"id": "ghi",
"amount": 300
}
]
}
now inside the data array in every document, I want to group by id and find the sum.
For the given 2 documents the solution would look something like
{
"id" : "abc",
"total" :800
},
{
"id" : "def",
"total" :200
},
{
"id" : "ghi",
"total" :300
}
Please help me in structuring my request query.
My initial approach was
{
"aggs": {
"group_by_id": {
"terms": {
"field": "data.id.keyword"
},
"aggs": {
"total" : {
"sum": {
"field": "data.amount"
}
}
}
}
}
}
The above query result is given below which is not the expected result.
{
"id" : "abc",
"total" :1300
},
{
"id" : "def",
"total" :600
},
{
"id" : "ghi",
"total" :700
}
Upvotes: 1
Views: 85
Reputation: 1274
You need to use a nested aggregation, and the type of your field data
should be declared as nested within your mapping.
Otherwise Elasticsearch will have the following view of your documents:
{
"xid": "1234567",
"time": "12/5/12 5:49 AM",
"data.id": ["abc", "def"],
"data.amount": [400, 200]
}
{
"xid": "1234568",
"time": "13/5/12 7:23 AM",
"data.id": ["abc", "ghi"],
"data.amount": [400, 300]
}
Your new mapping for the data
field should look like this:
"data": {
"type": "nested",
"properties": {
"id": {
"type": "keyword"
},
"amount": {
"type": "float"
}
}
}
And now you can do the following aggregation:
{
"size": 0,
"aggs": {
"data": {
"nested": {
"path": "data"
},
"aggs": {
"group_by_id": {
"terms": {
"field": "data.id"
},
"aggs": {
"total": {
"sum": {
"field": "data.amount"
}
}
}
}
}
}
}
}
And this is the result you will get:
"buckets": [
{
"key": "abc",
"doc_count": 2,
"total": {
"value": 800
}
},
{
"key": "def",
"doc_count": 1,
"total": {
"value": 200
}
},
{
"key": "ghi",
"doc_count": 1,
"total": {
"value": 300
}
}
]
Upvotes: 1