Reputation: 421
I have the following JSON data:
{
"categories": [
{
"category_id": "11decadd",
"name": "Com",
"category_type": "Type",
"position": 5,
"vela_defined": True,
"created_at": "2017-02-15 01:49:23 -0700",
"updated_at": "2017-02-15 01:49:23 -0700"
},
{
"category_id": "c7010763",
"name": "none",
"category_type": "EquipmentStatus",
"position": 1,
"vela_defined": True,
"created_at": "2017-02-15 01:49:23 -0700",
"updated_at": "2018-03-01 04:20:38 -0700"
}
],
"customizable_categories": [
{
"customizable_category_id": "435ae18b",
"name": "NA",
"category_id": "11decadd",
"position": 1,
"created_at": "2017-02-15 01:49:23 -0700",
"updated_at": "2017-02-15 01:49:23 -0700"
},
{
"customizable_category_id": "51e607d8",
"name": "Third Party",
"category_id": "fafab667",
"position": 2,
"created_at": "2017-02-15 01:49:23 -0700",
"updated_at": "2017-02-15 01:49:23 -0700"
}
],
"equipment_category_status_sets": [
]
}
and Im attempting to turn it into 3x Pandas data frames (as named by the JSON top level entry)
But cant seem to get it to load at all. Any advice?
Upvotes: 2
Views: 613
Reputation: 862671
I think need dictionary comprehension with DataFrame
contructor for dictionary of DataFrame
s:
dfs = {k:pd.DataFrame(v) for k, v in d.items()}
print (dfs['categories'])
category_id ... vela_defined
0 11decadd ... True
1 c7010763 ... True
[2 rows x 7 columns]
print (dfs['customizable_categories'])
category_id ... updated_at
0 11decadd ... 2017-02-15 01:49:23 -0700
1 fafab667 ... 2017-02-15 01:49:23 -0700
[2 rows x 6 columns]
print (dfs['equipment_category_status_sets'])
Empty DataFrame
Columns: []
Index: []
Upvotes: 2