Reputation: 1979
in a pandas data frame I have a column with dates and empty values like that
15 2018-04-13 13:26:54 UTC
16
...
28
29 2018-05-15 00:00:00 UTC
30
...
40
41
42 2018-03-24 20:32:36 UTC
...
46 2018-04-10 20:41:39 UTC
47
48
49 2018-01-26 20:30:22 UTC
....
58 2017-05-30 09:26:04 UTC
59 2010-09-09 14:09:03 UTC
and I am searching for values empty and in a date range. Unfortunately nothing like that worked
df[df['date_column'].loc['2017-01-01':'2018-01-01']]
df['date_column']isin(pd.date_range('two_months', periods=2, freq='M'))
df[df['date_column'].str.contains(regex_filters_date)]
How would I correctly select dates within a given range ?
Upvotes: 1
Views: 271
Reputation: 323356
For example you have following data frame
df=pd.DataFrame({'Date':['2018-03-24 20:32:36 UTC','','2018-01-26 20:30:22 UTC','']})
s=pd.to_datetime(df.Date)
df[(s>pd.to_datetime('2018-02-01'))&(s<pd.to_datetime('2018-04-01'))]
Date
0 2018-03-24 20:32:36 UTC
If you want empty selected
df[((s > pd.to_datetime('2018-02-01')) & (s < pd.to_datetime('2018-04-01')))|s.isnull()]
Out[831]:
Date
0 2018-03-24 20:32:36 UTC
1
3
Upvotes: 1
Reputation: 81
My preferred method of specifying a date range in pandas is to use a Boolean Mask, however there are other methods using tools such as the DatetimeIndex class.
Here is some documentation from an earlier thread I think you would find useful!
Using a boolean mask, your solution would look something like:
mask = (df['date_column'] > '2017-01-01') & (df['date_column'] <= '2018-01-01')
df = df.loc[[mask]]
Upvotes: 0