Reputation: 125
I have a dataframe df
as below:
date1 item_id
2000-01-01 00:00:00 0
2000-01-01 10:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 12:07:00 7
2000-01-02 00:08:00 8
2000-01-02 00:00:00 0
2000-01-02 00:01:00 1
2000-01-02 03:02:00 2
2000-01-02 00:03:00 3
2000-01-02 00:04:00 4
2000-01-02 00:05:00 5
2000-01-02 04:06:00 6
2000-01-02 00:07:00 7
2000-01-02 00:08:00 8
I need the data for single day i.e. 1st Jan 2000. Below query gives me the correct result. But is there a way it can be done just by passing "2000-01-01"?
result= df[(df['date1'] > '2000-01-01 00:00') & (df['date1'] < '2000-01-01 23:59')]
Upvotes: 1
Views: 38
Reputation: 863611
Use partial string indexing
, but need DatetimeIndex
first:
df = df.set_index('date1')['2000-01-01']
print (df)
item_id
date1
2000-01-01 00:00:00 0
2000-01-01 10:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 12:07:00 7
Another solution is convert datetimes to strings by strftime
and filter by boolean indexing
:
df = df[df['date1'].dt.strftime('%Y-%m-%d') == '2000-01-01']
print (df)
date1 item_id
0 2000-01-01 00:00:00 0
1 2000-01-01 10:01:00 1
2 2000-01-01 00:02:00 2
3 2000-01-01 00:03:00 3
4 2000-01-01 00:04:00 4
5 2000-01-01 00:05:00 5
6 2000-01-01 00:06:00 6
7 2000-01-01 12:07:00 7
Upvotes: 3
Reputation: 18914
The other alternative would be to create a mask:
df[df.date1.dt.date.astype(str) == '2000-01-01']
Full example:
import pandas as pd
data = '''\
date1 item_id
2000-01-01T00:00:00 0
2000-01-01T10:01:00 1
2000-01-01T00:02:00 2
2000-01-01T00:03:00 3
2000-01-01T00:04:00 4
2000-01-01T00:05:00 5
2000-01-01T00:06:00 6
2000-01-01T12:07:00 7
2000-01-02T00:08:00 8
2000-01-02T00:00:00 0
2000-01-02T00:01:00 1
2000-01-02T03:02:00 2'''
df = pd.read_csv(pd.compat.StringIO(data), sep='\s+', parse_dates=['date1'])
res = df[df.date1.dt.date.astype(str) == '2000-01-01']
print(res)
Returns:
date1 item_id
0 2000-01-01 00:00:00 0
1 2000-01-01 10:01:00 1
2 2000-01-01 00:02:00 2
3 2000-01-01 00:03:00 3
4 2000-01-01 00:04:00 4
5 2000-01-01 00:05:00 5
6 2000-01-01 00:06:00 6
7 2000-01-01 12:07:00 7
Or
import datetime
df[df.date1.dt.date == datetime.date(2000,1,1)]
Upvotes: 2