Reputation: 31
I load a word2vec-format file and I want to calculate the similarities between vectors, but I don't know what this issue means.
from gensim.models import Word2Vec
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import KeyedVectors
import numpy as np
model = KeyedVectors.load_word2vec_format('it-vectors.100.5.50.w2v')
similarities = cosine_similarity(model.vectors)
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-54-1d4e62f55ebf> in <module>()
----> 1 similarities = cosine_similarity(model.vectors)
/usr/local/lib/python3.5/dist-packages/sklearn/metrics/pairwise.py in cosine_similarity(X, Y, dense_output)
923 Y_normalized = normalize(Y, copy=True)
924
--> 925 K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output)
926
927 return K
/usr/local/lib/python3.5/dist-packages/sklearn/utils/extmath.py in safe_sparse_dot(a, b, dense_output)
138 return ret
139 else:
--> 140 return np.dot(a, b)
141
142
MemoryError:
What it means? Thank you!
Upvotes: 1
Views: 939
Reputation: 54243
MemoryError
means there's not enough memory to complete the operation.
How many vectors are in your 'it-vectors.100.5.50.w2v' set?
Note that cosine_similarity()
creates an (n x n) results matrix. So if you have 100,000 vectors in your set, you'll need a results array of size:
100,000^2 * 4 bytes/float = 40GB
Do you have that much addressable memory?
Upvotes: 5