Reputation: 33
My goal is to go through various signals and ignore any 1's that are not part of a series (minimum of at least two 1's in a row). The data is an xts time series with 180K+ columns and 84 months. I've provided a small simplified data set I've used a nest for loop, but it's taking way too long to finish on the entire data set. It works but is horribly inefficient.
I know there's some way to use an apply function, but I can't figure it out.
Example data:
mod_sig <- data.frame(a = c(0,1,0,0,0,1,1,0,0,0,1,0,1,1),
b = c(0,0,1,0,0,1,0,0,0,1,1,1,1,1),
c = c(0,1,0,1,0,1,1,1,0,0,0,1,1,0),
d = c(0,1,1,1,0,1,1,0,0,1,1,1,1,1),
e = c(0,0,0,0,0,0,0,0,0,0,1,0,0,0))
mod_sig <- xts(mod_sig, order.by = as.Date(seq(as.Date("2016-01-01"), as.Date("2017-02-01"), by = "month")))
Example code:
# fixing months where condition is only met for one month
# creating a new data frame for modified signals
Signals_Fin <- data.frame(matrix(nrow = nrow(mod_sig), ncol = ncol(mod_sig)))
colnames(Signals_Fin) <- colnames(mod_sig)
# Loop over Signals to change 1's to 0's for one month events
for(col in 1:ncol(mod_sig)) {
for(row in 1:nrow(mod_sig)) {
val <- ifelse(mod_sig[row,col] == 1,
ifelse(mod_sig[row-1,col] == 0,
ifelse(mod_sig[row+1,col] == 0,0,1),1),0)
Signals_Fin[row, col] <- val
}
}
As you can see with the loop, any 1's that aren't in a sequence are changed to 0's. I know there is a better way, so I'm hoping to improve my approach. Any insights would be greatly appreciated. Thanks!
Answer from Zack and Ryan:
Zack and Ryan were spot on with dyplr, I only made slight modifications based off what was given and some colleague help.
Answer code:
mod_sig <- data.frame(a = c(0,1,0,0,0,1,1,0,0,0,1,0,1,1),
b = c(0,0,1,0,0,1,0,0,0,1,1,1,1,1),
c = c(0,1,0,1,0,1,1,1,0,0,0,1,1,0),
d = c(0,1,1,1,0,1,1,0,0,1,1,1,1,1),
e = c(0,0,0,0,0,0,0,0,0,0,1,0,0,0))
Signals_fin = mod_sig %>%
mutate_all(funs(ifelse((. == 1 & (lag(.) == 1 | lead(.) == 1)),1,0))) %>%
mutate_all(funs(ifelse(is.na(.), 0, .)))
Signals_fin <- xts(Signals_fin, order.by = as.Date(seq(as.Date("2016-01-01"), as.Date("2017-02-01"), by = "month")))
Upvotes: 3
Views: 382
Reputation: 5405
here's a stab from a dplyr
perspective, I converted your row_names to a column but you can just as easily convert them back to rownames with tibble::column_to_rownames()
:
library(dplyr)
library(tibble)
mod_sig %>%
as.data.frame() %>%
rownames_to_column('months') %>%
mutate_at(vars(-months), function(x){
if_else(x == 1 &
(lag(x, order_by = .$months) == 1 |
lead(x, order_by = .$months) == 1),
1,
0)
})
As suggested by @Ryan, his mutate_at
call is more elegant, it's important everything is already sorted, though:
mod_sig %>%
as.data.frame() %>%
rownames_to_column('months') %>%
mutate_at(vars(-months), ~ as.numeric(.x & (lag(.x) | lead(.x))))
And to build on his suggestion:
mod_sig %>%
as.data.frame() %>%
mutate_all(~ as.numeric(.x & (lag(.x) | lead(.x))))
Upvotes: 2