Reputation: 461
For a sample DataFrame like,
>>> import pandas as pd
>>> index = pd.date_range(start='1/1/2018', periods=6, freq='15T')
>>> data = ['ON_PEAK', 'OFF_PEAK', 'ON_PEAK', 'ON_PEAK', 'OFF_PEAK', 'OFF_PEAK']
>>> df = pd.DataFrame(data, index=index, columns=['tou'])
>>> df
tou
2018-01-01 00:00:00 ON PEAK
2018-01-01 00:15:00 OFF PEAK
2018-01-01 00:30:00 ON PEAK
2018-01-01 00:45:00 ON PEAK
2018-01-01 01:00:00 OFF PEAK
2018-01-01 01:15:00 OFF PEAK
How to get all indexes for which tou
value is not ON_PEAK
but of row before them is ON_PEAK
, i.e. the output would be:
['2018-01-01 00:15:00', '2018-01-01 01:00:00']
Or, if it's easier to get all rows with ON_PEAK
and the first row next to them, i.e
['2018-01-01 00:00:00', '2018-01-01 00:15:00', '2018-01-01 00:30:00', '2018-01-01 00:45:00', '2018-01-01 01:00:00']
Upvotes: 1
Views: 28
Reputation: 8631
You need to find rows where tou
is not ON_PEAK
and the previous tou
found using pandas.shift() is ON_PEAK
. Note that positive values in shift
give nth previous values and negative values gives nth next value in the dataframe.
df.loc[(df['tou']!='ON_PEAK') & (df['tou'].shift(1)=='ON_PEAK')]
Output:
tou
2018-01-01 00:15:00 OFF_PEAK
2018-01-01 01:00:00 OFF_PEAK
Upvotes: 1