Reputation: 10939
I have written a class multi_array
which is sort of an extension of std::array
to multiple dimensions.
template <typename T, std::size_t... N>
class multi_array {
template <std::size_t... I, typename... Idx>
constexpr std::size_t linearized_index(meta::index_sequence<I...>,
Idx... idx) const {
std::size_t index = 0;
using unpack = std::size_t[];
(void)unpack{0UL,
((void)(index = (index + unpack{std::size_t(idx)...}[I]) *
meta::pack_element<I + 1, N...>::value),
0UL)...};
return index + unpack{std::size_t(idx)...}[sizeof...(idx) - 1];
}
// Storage
T m_data[meta::product<N...>::value];
//...
};
I have managed to get constexpr
element access but only in C++14. The problem is the function linearized_index
. It computes the linearized index at compile-time. In order to do so it reduces the tuple of indices and the tuple of dimension in a certain manner. For this reduction I need a local variable inside the function but this is not allowed in C++11. My environment does not permit the usage of C++14. Can I somehow rewrite this function to work with C++11?
I have prepared a full (not so minimal) example which compiles in C++14.
#include <cstddef> // std::size_t
namespace meta {
// product
template <std::size_t...>
struct product;
template <std::size_t head, std::size_t... dim>
struct product<head, dim...> {
static constexpr std::size_t const value = head * product<dim...>::value;
};
template <>
struct product<> {
static constexpr std::size_t const value = 1;
};
// pack_element
template <std::size_t index, std::size_t head, std::size_t... pack>
struct pack_element {
static_assert(index < sizeof...(pack) + 1, "index out of bounds");
static constexpr std::size_t const value =
pack_element<index - 1, pack...>::value;
};
template <std::size_t head, std::size_t... pack>
struct pack_element<0, head, pack...> {
static constexpr std::size_t const value = head;
};
// index_sequence
// https://stackoverflow.com/a/24481400
template <std::size_t... I>
struct index_sequence {};
template <std::size_t N, std::size_t... I>
struct make_index_sequence : public make_index_sequence<N - 1, N - 1, I...> {};
template <std::size_t... I>
struct make_index_sequence<0, I...> : public index_sequence<I...> {};
} // namespace meta
template <typename T, std::size_t... N>
class multi_array {
template <std::size_t... I, typename... Idx>
constexpr std::size_t linearized_index(meta::index_sequence<I...>,
Idx... idx) const {
std::size_t index = 0;
using unpack = std::size_t[];
(void)unpack{0UL,
((void)(index = (index + unpack{std::size_t(idx)...}[I]) *
meta::pack_element<I + 1, N...>::value),
0UL)...};
return index + unpack{std::size_t(idx)...}[sizeof...(idx) - 1];
}
// Storage
T m_data[meta::product<N...>::value];
public:
constexpr multi_array() {}
template <typename... U>
constexpr multi_array(U... data) : m_data{T(data)...} {}
template <typename... Idx>
constexpr T operator()(Idx... idx) const noexcept {
std::size_t index = linearized_index(
meta::make_index_sequence<sizeof...(idx) - 1>{}, idx...);
return m_data[index];
}
};
int main() {
constexpr multi_array<double, 2, 2> const b = {0, 0, 0, 1};
static_assert(b(1, 1) == 1, "!");
}
Live on Wandbox (C++14) and Live on Wandbox (C++11)
Upvotes: 12
Views: 635
Reputation: 66210
If in operator()
, instead of calling
std::size_t index = linearized_index(
meta::make_index_sequence<sizeof...(idx) - 1>{}, idx...);
you call
std::size_t index = linearized_index<N...>(idx...);
or better (to make operator()
constexpr
)
return m_data[linearized_index<N...>(idx...)];
you can rewrite linearized_index()
recursively as follows
// ground case
template <std::size_t>
constexpr std::size_t linearized_index (std::size_t idx0) const
{ return idx0; }
// recursive case
template <std::size_t, std::size_t... Is, typename... Idx>
constexpr std::size_t linearized_index (std::size_t idx0,
Idx ... idxs) const
{ return idx0 * meta::product<Is...>::value
+ linearized_index<Is...>(idxs...); }
If you prefer, the ground case can be written as follows
template <typename = void>
constexpr std::size_t linearized_index () const
{ return 0; }
Observe that you don't need meta::index_sequence
, meta::make_index_sequence
or meta::pack_element
anymore.
The following is a full C++11 compiling example
#include <cstddef> // std::size_t
namespace meta
{
template <std::size_t...>
struct product;
template <std::size_t head, std::size_t... dim>
struct product<head, dim...>
{ static constexpr std::size_t const value
= head * product<dim...>::value; };
template <>
struct product<>
{ static constexpr std::size_t const value = 1; };
} // namespace meta
template <typename T, std::size_t... N>
class multi_array
{
private:
// ground case
template <std::size_t>
constexpr std::size_t linearized_index (std::size_t idx0) const
{ return idx0; }
// alternative ground case
//template <typename = void>
//constexpr std::size_t linearized_index () const
// { return 0; }
// recursive case
template <std::size_t, std::size_t... Is, typename... Idx>
constexpr std::size_t linearized_index (std::size_t idx0,
Idx ... idxs) const
{ return idx0 * meta::product<Is...>::value
+ linearized_index<Is...>(idxs...); }
// Storage
T m_data[meta::product<N...>::value];
public:
constexpr multi_array()
{ }
template <typename ... U>
constexpr multi_array(U ... data) : m_data{T(data)...}
{ }
template <typename... Idx>
constexpr T operator() (Idx... idx) const noexcept
{ return m_data[linearized_index<N...>(idx...)]; }
};
int main()
{
constexpr multi_array<double, 2, 2> const b = {0, 0, 0, 1};
static_assert( b(1, 1) == 1, "!" );
constexpr multi_array<double, 4, 3, 2> const c
{ 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 2, 0, 0, 0,
0, 0, 0, 0, 0, 1};
static_assert( c(3, 2, 1) == 1, "!" );
static_assert( c(2, 1, 0) == 2, "!" );
}
Bonus suggestion: if you add the following constexpr
functions (static
methods inside multi_array
?)
constexpr static std::size_t prod ()
{ return 1U; }
template <typename ... Args>
constexpr static std::size_t prod (std::size_t v, Args ... vs)
{ return v * prod(vs...); }
you can delete the struct product
calling
// Storage
T m_data[prod(N...)];
and
// recursive case
template <std::size_t, std::size_t... Is, typename... Idx>
constexpr std::size_t linearized_index (std::size_t idx0,
Idx ... idxs) const
{ return idx0 * prod(Is...) + linearized_index<Is...>(idxs...); }
Upvotes: 4
Reputation: 10939
I have managed to get a C++11 compatible solution by rewriting the function to evaluate recursively. This not only works but is also a lot nicer to read:
template <typename... Idx>
constexpr std::size_t linearized_index(std::size_t n, Idx... idx) const {
using unpack = std::size_t[];
return unpack{std::size_t(idx)...}[n] +
(n == 0 ? 0
: unpack{std::size_t(N)...}[n] *
linearized_index(n - 1, idx...));
}
I have found another solution using template specializations which avoids the recursive function call and replaces it with recursive instantiation.
namespace meta {
template <size_t n, size_t... N>
struct linearized_index {
template <typename... Idx>
constexpr std::size_t operator()(Idx... idx) const {
using unpack = std::size_t[];
return unpack{std::size_t(idx)...}[n] +
unpack{std::size_t(N)...}[n] *
linearized_index<n - 1, N...>{}(idx...);
}
};
template <size_t... N>
struct linearized_index<0, N...> {
template <typename... Idx>
constexpr std::size_t operator()(Idx... idx) const {
using unpack = std::size_t[];
return unpack{std::size_t(idx)...}[0];
}
};
} // namespace meta
and the multi_array
call operator
template <typename... Idx>
constexpr T operator()(Idx... idx) const noexcept {
return m_data[meta::linearized_index<sizeof...(idx) - 1, N...>{}(
idx...)];
}
This produces perfect assembly: https://godbolt.org/g/8LPkBZ
Upvotes: 1
Reputation: 37587
Straightforward approach avoiding arrays:
#include <tuple>
#include <type_traits>
#include <cstddef>
template
<
typename x_IndexTypesTuple
, ::std::size_t ... x_dimension
> class
t_MultiIndexImpl;
template
<
typename x_LeadingIndex
, typename ... x_Index
, ::std::size_t x_leadding_dimension
, ::std::size_t ... x_dimension
> class
t_MultiIndexImpl
<
::std::tuple<x_LeadingIndex, x_Index ...>, x_leadding_dimension, x_dimension ...
> final
{
static_assert
(
::std::is_same<::std::size_t, x_LeadingIndex>::value
, "index type must be ::std::size_t"
);
public: static constexpr auto
Op
(
::std::size_t const stride_size
, x_LeadingIndex const leading_index
, x_Index const ... index
) -> ::std::size_t
{
return stride_size * leading_index
+ t_MultiIndexImpl<::std::tuple<x_Index ...>, x_dimension ...>::Op
(
stride_size * x_leadding_dimension, index ...
);
}
};
template<> class
t_MultiIndexImpl<::std::tuple<>> final
{
public: static constexpr auto
Op(::std::size_t const /*stride_size*/) -> ::std::size_t
{
return ::std::size_t{0};
}
};
template<::std::size_t ... x_dimension, typename ... x_Index> inline constexpr auto
Caclculate_MultiIndex(x_Index const ... index) -> ::std::size_t
{
static_assert
(
sizeof...(x_dimension) == sizeof...(x_Index)
, "arguments count must match dimensions count"
);
return t_MultiIndexImpl<::std::tuple<x_Index ...>, x_dimension ...>::Op(::std::size_t{1}, index ...);
}
Upvotes: 2
Reputation: 16404
The crucial part of your use of index
is an iterative loop:
index = (index*a) + b
In your own C++14 solution, a trick of unpacking parameter pack is used. In C++11, you can formulate it in a recursive constexpr
function:
struct mypair {
size_t a;
size_t b;
};
constexpr std::size_t foo(std::size_t init) {
return init;
}
template<class... Pair>
constexpr std::size_t foo(std::size_t init, mypair p0, Pair... ps) {
return foo((init+p0.a)*p0.b, ps...);
}
We use mypair
instead of std::pair
because the constructor of std::pair
in C++11 is not constexpr
. Then your iterative loop can be literally translated to:
template <std::size_t... I, typename... Idx>
constexpr std::size_t linearized_index(meta::index_sequence<I...>,
Idx... idx) const {
using unpack = std::size_t[];
return foo(0, mypair{unpack{std::size_t(idx)...}[I], meta::pack_element<I+1, N...>::value}...) + unpack{std::size_t(idx)...}[sizeof...(idx) - 1];
}
Upvotes: 7