Reputation: 137
I am trying to train a model in TensorFlow. I've got a problem with the labels. Here is my input function:
def my_input_fn():
filenames = tf.constant(glob.glob("C:/test_proje/*.jpg"))
labels = tf.constant([0, 0, 1, 1, 1, 1, 1, 0, 0, 0])
labels = tf.one_hot(labels, 2)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(_parse_function)
return dataset
And here is the CNN model
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
print(labels.shape)
print(labels[0])
# Input Layer
input_layer = tf.reshape(features["image"], [-1, 168, 84, 3])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2],
strides=2)
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2],
strides=2)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 42 * 21 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=4,
activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode ==
tf.estimator.ModeKeys.TRAIN)
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=2)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by
the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,
logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss,
train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
I am getting this error: ValueError: Shape mismatch: The shape of labels (received (2,)) should equal the shape of logits except for the last dimension (received (1, 2)).
When I print the shape of labels before cnn_model_fn, it is (10,2). But when I print it in cnn_model_fn, it suddenly becomes (2,)
Thanks.
Upvotes: 1
Views: 7621
Reputation: 2072
I think it's your use of sparse_softmax_cross_entropy. You feed it one hot encoded labels which it doesn't want.
Switch to just normal softmax_cross_entropy and see if that works.
https://stackoverflow.com/a/37317322/7431458
Upvotes: 8