Reputation: 4807
I have pandas dataframe as:
df
Id Name CaseId Value
82 A1 case1.01 37.71
1558 A3 case1.01 27.71
82 A1 case1.06 29.54
1558 A3 case1.06 29.54
82 A1 case1.11 12.09
1558 A3 case1.11 32.09
82 A1 case1.16 33.35
1558 A3 case1.16 33.35
For each Id, Name pair I need to select the CaseId with maximum value.
i.e. I am seeking the following output:
Id Name CaseId Value
82 A1 case1.01 37.71
1558 A3 case1.16 33.35
I tried the following:
import pandas as pd
pd.pivot_table(df, index=['Id', 'Name'], columns=['CaseId'], values=['Value'], aggfunc=[np.max])['amax']
But all it does is for each CaseId
as column it gives maximum value and not the results that I am seeking above.
Upvotes: 7
Views: 3579
Reputation: 1990
Another idea is to create a joint column, take its max, then split it back to two columns:
df['ValueCase'] = list(zip(df['Value'], df['CaseId']))
p = pd.pivot_table(df, index=['Id', 'Name'], values=['ValueCase'], aggfunc='max')
p['Value'], p['CaseId'] = list(zip(*p['ValueCase']))
del p['ValueCase']
Results in:
CaseId Value
Id Name
82 A1 case1.01 37.71
1558 A3 case1.16 33.35
Upvotes: 2
Reputation: 323376
sort_values
+ drop_duplicates
df.sort_values('Value').drop_duplicates(['Id'],keep='last')
Out[93]:
Id Name CaseId Value
7 1558 A3 case1.16 33.35
0 82 A1 case1.01 37.71
Since we post same time , adding more method
df.sort_values('Value').groupby('Id').tail(1)
Out[98]:
Id Name CaseId Value
7 1558 A3 case1.16 33.35
0 82 A1 case1.01 37.71
Upvotes: 7
Reputation: 294516
With nlargest
and groupby
pd.concat(d.nlargest(1, ['Value']) for _, d in df.groupby('Name'))
Id Name CaseId Value
0 82 A1 case1.01 37.71
7 1558 A3 case1.16 33.35
Upvotes: 2
Reputation: 12417
This should work:
df = df.sort_values('Value', ascending=False).drop_duplicates('Id').sort_index()
Output:
Id Name CaseId Value
0 82 A1 case1.01 37.71
7 1558 A3 case1.16 33.35
Upvotes: 2